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Abstract—We present algorithms for implementing large-scale
regular expression matching (REM) on FPGA. Based on the
proposed algorithms, we develop tools that first transform regular
expressions into corresponding non-deterministic finite automata
(RE-NFA), then convert the RE-NFA into structural VHDL that
utilize both logic slices and block memory (BRAM) available on
modern FPGA devices. An n-state m-character input regular
expression matching engine (REME) can be constructed in
O (n×m log2 m) time using O (n×m) memory space, resulting
in a circuit that occupies no more than O (n×m) slices on FPGA.
A large number of REMEs are placed automatically onto a two-
dimensional staged pipeline, allowing scalability to hundreds of
REMEs with linear area increase, running at over 300 MHz on
Xilinx Virtex 4 devices.

Index Terms—Regular expression, FPGA, BRAM, finite state
machine, NFA

I. INTRODUCTION

Regular expression matching (REM) has many applications
ranging from text processing to packet filtering. In the narrow
sense, a regular expression defines a regular language over a
fixed alphabet for the character sets, and offers three basic
operators to bind the character sets together: concatenation
(·), union (|), and Kleene closure (∗). There are other common
operators that also conform to the regular language construct,
such as character classes ([. . .]), optionality (?) and con-
strained repetitions ({a, }, {, b}, {a, b}). All of these operators
can be realized by proper arrangements of the three basic ones.

Improving large-scale REM performance has been a re-
search focus in recent years [3], [2], [11], [9], [1], [7], [5].
Since regular languages can be sufficiently and necessarily
accepted by finite state automata, a regular expression match-
ing engine (REME) supporting concatenation, union, closure,
repetition, and optionality can always be implemented as
either a non-deterministic finite automaton (RE-NFA) or a
deterministic finite automaton (RE-DFA).

In an RE-NFA approach [4], [10], individual regular ex-
pressions and their character matching states are processed in
parallel with one another. As a result, more than one state in
an RE-NFA can be active at any time. Optimizations such as
input/output pipelining [6], common-prefix extraction [6], [2],
multi-character input, and centralized character decoding [3],
[2], can be applied to improve throughput and reduce resource
requirements of the overall design.

In an RE-DFA approach, several regular expressions are
grouped [11] into a DFA by expanding different combinations
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of active states into new combined states. In principle, only
one combined state in an RE-DFA is active at any time.
Various techniques [5], [8], [7], [1] are then applied to improve
memory access efficiency and to reduce the total number of
states, which usually suffers from quadratic to exponential
explosion [11].

Due to the matching power of regular expression and the
complexity of the strings being matched, an REM can be the
slowest path of a system. A REM of length n over an alphabet
of size Σ can take up to O

(
n2

)
time to process each character

(for RE-NFA) or O (Σn) memory space to store the state
transition table (for RE-DFA) [11]. Furthermore, to process
K concurrent REM patterns, the overall throughput could be
K times slower (for RE-NFA) or take O

(
ΣK

)
more memory

space (for RE-DFA) in the worst case.
In this study we focus on the automatic construction of

large-scale REM on FPGA using the RE-NFA approach. We
develop programs which translate and compile a large number
of regular expression matching engines (REMEs) into an
area-efficient, high-performance circuit, described as structural
VHDL for FPGA implementation.

The rest of this paper is organized as follows. We discuss the
background and prior work of RE-NFA on FPGA in Section 2.
In Section 3 we describe our basic RE-NFA architecture and
the algorithms we use to construct the large-scale REME on
FPGA. Section 4 explains the architectural optimizations used
by our REME construction tools, while Section 5 discusses the
achieved performance. Section 6 concludes the papers.

II. RELATED WORK

Hardware implementation of regular expression matching
(REM) was first studied by Floyd and Ullman [4]. They
showed that an n-state RE-NFA can be translated into inte-
grated circuits using no more than O (n) circuit area. Sidhu
and Prasanna [10] later proposed an algorithm and strategy to
implement REM on FPGA in a similar RE-NFA architecture,
which has been used by most other RE-NFA implementations
on FPGA ([6], [3], [2], [9]).

Automatic REME construction on FPGA was first proposed
in [6] using JHDL for both regular expression parsing and cir-
cuit generation. In particular, the HDL construction approach
used in [6] is in contrast to the self-configuration approach
done by [10]. Reference [6] also considered large-scale REM
construction, where the character input is broadcasted globally
to all states in a tree-structured pipeline.
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Fig. 1. Modified McNaughton-Yamada construction. Note that in rules (c)
and (d), the dashed ellipses are not part of the current construction.

Automatic REME constructions in VHDL were proposed
in both [2] and [9]. In [2], the regular expression was first
tokenized and parsed into a hierarchy, then converted to VHDL
in a bottom-up scheme. In [9], a set of scripts were used to
compile regular expressions into op-codes, to convert op-codes
into NFA, and to construct the NFA circuit in VHDL.

A multi-character decoder was proposed in [3] to improve
REM throughput. It was also observed that character matching
could be performed more efficiently at a centralized location.
The paper, however, fell short to describe an automatic mech-
anism to translate any general regular expression into a multi-
character input circuit.

III. AUTOMATIC REME CONSTRUCTION

We implement REM on FPGA in three steps: (1) Parse the
regular expressions into tree structures. (2) Use the modified
McNaughton-Yamada construction (Figure 1, Algorithm 1) to
construct the RE-NFAs. (3) Map the RE-NFAs into structural
VHDL suitable for FPGA implementation.

Our first step is the same as that described in [4]. Steps (2)
and (3) are explained in the following subsections.

A. From Regular Expression to NFA

Unlike in [4], we use a modified McNaughton-Yamada
construction to construct our RE-NFA state machines. Figure 1
shows the graphical description of the modified construction
rules. The modified construction is described in Algorithm 1.
Note that the modified McNaughton-Yamada algorithm pro-
duces no extra nodes nor ε-transitions for the union and
closure operators (see Algorithm 1 or Figure 1 (c) and (d)).
This makes the resulting NFA extremely modular and easy to
map to HDL codes.

For example, using the modified construction algorithm, the
regular expression “\x2F (f|s) \?[ˆ\r\n] ∗ si” is converted
into a modular NFA with a uniform structure (Figure 2).
This conversion is arguably the most complex part of the
construction process, taking roughly 350 lines of C code for
the automation.

B. From RE-NFA to VHDL

To translate the RE-NFA (like Figure 2) into VHDL, each
pair of nodes inside a lightly shaded ellipse is mapped to an

Algorithm 1 The modified McNaughton-Yamada construction
that converts a regular expression parse tree to a modular RE-
NFA.
Global data:
TNFA The resulting state transition table.

Conventions:
n [value] Content value of node n.
n [left|right|child] Left, right, or only child of node n.
s [next] Set of next-state transitions of state s.
s [char] Set of matching characters of state s.
Macros:
s← CREATE_STATE (T ) :

Create a new state s in the state transition table
T .

p← CREATE_PSEUDO() :
Create a special pseudo-state p for later use.

ADD_PSEUDO_NEXT (p, S) :
For every state s ∈ S, add p [next] to s [next].
Pseudo-state p is deleted afterward.

PROCEDURE Sout ⇐ RE2NFA
(
nroot, Spre

)
nroot Root node of the parse (sub-)tree.
Spre Set of immediate previous states.
Sout Set of states transitioning directly outside of nroot.

BEGIN
ncur ← nroot;
while ncur 6= null

if ncur [value] = OP_CONCAT

Spre ⇐ RE2NFA
(
ncur [left] , Spre

)
;

ncur ← ncur [right];
else if ncur [value] = OP_UNION

SL ⇐ RE2NFA
(
ncur [left] , Spre

)
;

SR ⇐ RE2NFA
(
ncur [right] , Spre

)
;

return SL ∪ SR;

else if ncur [value] = OP_CLOSURE

p← CREATE_PSEUDO();
Stmp ← Spre ∪ p;
SC ⇐ RE2NFA (ncur [child] , Stmp);
ADD_PSEUDO_NEXT (p, SC);
return SC ∪ Spre;

else // ncur = leaf node
snew ← CREATE_STATE (TNFA);
snew [char]← ncur [value];
foreach s in Spre

// add epsilon transitions
s [next]← s [next] ∪ snew

end foreach
return snew

end if

end while
// error: ncur [right] cannot be null

END
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Fig. 2. A modular NFA for “\x2F (f|s) \?[ˆ\r\n] ∗ si” constructed using
the modified McNaughton-Yamada rules specified in Figure 1.

Fig. 3. Circuits for matching “\x2F (f|s) \?[ˆ\r\n] ∗ si” constructed by
mapping Figure 2 directly to HDL. The ⊕ symbol represent the logic OR gate.

entity statebit in VHDL with one parameter: the number
of input ports, determined by the number of “previous states”
that immediately transition to the current state. Inside the
entity statebit, all inputs aggregate to a single OR gate,
followed by a character matching via a logic AND and a state
value register. A single output port connects the output value
of the register to the inputs of the immediate “next states.”

The REM circuit for Figure 2 is shown in Figure 3. On
FPGA devices with 4-input LUTs, a k-input OR followed by
the 2-input AND can be efficiently implemented on a single
LUT if k ≤ 3, or on a single slice of 2 LUTs if 4 ≤ k ≤ 7.
The mapping takes only about 300 lines of C code to convert
any such RE-NFA to its corresponding VHDL.1

C. BRAM-based Character Classification

In our BRAM-based character classification, each 8-bit
character classification is specified by a 256-bit vector, with
every bit member representing the inclusion of one character
value. The character matching result (true|false) is sent to
the entity statebit as a single bit from the 256-bit vector
indexed by the value of the input character.

If two states match the same character class, they can share
the same character classification output. As a result, character
classification of an n-state RE-NFA can be implemented on
a block memory (BRAM) of no more than 256× n bits. The
aggregation of character classes and their distribution to every
REME takes 200 lines of C code.

1This includes the instantiation of BRAM-based character classification
(bottom part of Figure 3, discussed in Section III-C) and the m-character input
extension (Section IV-A). The contents of the BRAM required for character
classification are specified in separate data files.

Fig. 4. A 2-input matching circuit for the regular expression
“\x2F (f|s) \?[ˆ\r\n] ∗ si”.

IV. ARCHITECTURAL OPTIMIZATIONS

We apply three optimizations to improve our basic design:
(1) multi-character input matching, (2) centralized character
classification, and (3) staged pipelining. These architectural
enhancements take advantage of the uniform structure of our
design and are fully integrated to the automatic translation
tools that we developed.

A. Multi-Character Input Matching
We adopt a circuit-level spatial approach to construct multi-

character input REMEs. Let Cl and Cm be an l-character
and m-character input circuit, respectively, for the same RE-
NFA. To construct the (l +m)-character input circuit Cl+m,
we perform the following transformations on every state
i ∈ {1, 2, . . . , n− 1} of both Cl and Cm:

1) Remove the state register i of Cl; forward the AND gate
output to its state output.

2) Disconnect state output i of Cl from the state inputs of
Cl, and re-connect it to the corresponding state inputs
of Cm.

3) Disconnect the state output i of Cm from the state inputs
of Cl, and re-connect it to the corresponding state inputs
of Cl.

4) The combined circuit receives (l +m) character match-
ing signals per cycle. The first l signals are sent to the
Cl part; the last m signals are sent to the Cp part.

Each application of the procedure requires O (n) time to build
an n-state m-character input REME, resulting in a circuit
of O (n×m) area. Recursively, an n-state m-character input
REME can be constructed in O (n× log2m) time, starting
from the one-character input REME. A two-character input
REME for the circuit of Figure 3 is shown in Figure 4. Note
that the START and MATCH states must be merged and aggre-
gated, respectively.

B. Staged Pipelining with Centralized Character Classifica-
tion

With a straight forward implementation, the BRAM-based
character classification (Section III-C) would incur much mem-
ory redundancy and become the resource bottleneck for large
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Fig. 5. Structure of a staged pipeline for 16 different REMEs.

numbers of REMEs. We solve this problem by aggregating
character classifications of different REMEs into one central-
ized location.

When constructing the centralized character classification, a
function is called to compare the character class of every state
to the character classes previously collected in BRAM. Only
newly seen character classes are added as new entries (column
of 256 bits) in BRAM. For previously seen character classes,
proper connections are made from their BRAM outputs to the
inputs of the respective states. The time complexity of this
procedure is O (n× w), where n is the total number of states
in all REMEs and w is the number of distinct character classes
among the n states. The space complexity is just 256×w. We
find that with a prudent grouping of REMEs, w tends to grow
much more slowly than O (log n) in practice.

When grouping a large number of REMEs together on
FPGA, the achievable clock frequency tends to decline due to
the higher fan-outs and more complicated routing. We design
a 2-D staged pipeline to improve the scalability of our circuit.
An example of 16 REMEs in 2 pipelines of 2 stages per
pipeline is shown in Figure 5. Every input character is sent
to the first pipeline in one clock cycle, and forwarded to the
next pipeline in the next clock cycle. Within a pipeline, all
the REMEs share the same centralized character classification,
whose output is buffered and forwarded through all stages in
the pipeline.

Matching outputs of all REMEs are prioritized, with lower-
indexed pipelines and stages having higher priority. Within
a stage, matching outputs from different REMEs are priority-
encoded, buffered and forwarded to the next stages in the same
way as the input character classifications.

V. EXPERIMENTAL RESULTS

A. Performance Benchmark

We developed a regular expression benchmark generator
to test how different types of regular expressions affect per-
formance of the REMEs constructed in our architecture. The
generator produced regular expressions of different state count
(n), state fan-in (w), and variable lengths of loop-back (k)
and feed-forward (k−p). A general structure of the generated

Fig. 6. Structure of the regular expressions from the benchmark generator.

regular expressions is described in Figure 6.2

State count represents the total number of states in an RE-
NFA. It was used in [4] to describe the area requirement of
a REME with respect to the length of the regular expression.
We defined state fan-in as the maximum number of transitions
entering any state, since the state machine runs at the speed
of the slowest state transition. State transitions loop-back and
feed-forward, caused by closure operators, affected routing
complexity and delay.

B. Construction of Snort REMEs

Figure 7 shows the performance of 267 REMEs extracted
from Snort rules with medium lengths (8-64 states) and
complexity. There were total 6551 states, averaged 24.5 per
REME. Most of the REMEs had state fan-in around 2 or 3,
with a few going as high as 8.

In each test case, a circuit with 267 REMEs was syn-
thesized, placed and routed by Xilinx ISE 10.1 on a Xilinx
Virtex 4 LX-40-12 device. The reported achievable clock
frequency was used to estimate the throughput. As m in-
creased, resource usage increased almost linearly. However,
due to the lower clock frequencies of the circuits, throughput
increased sub-linearly. BRAM usage increased linearly with
every two increments of m, since every two input characters
require a dedicated dual-port BRAM block to produce the
character matches. Due to the use of centralized character
classification, BRAM was always underutilized and never a
resource constraint.

In Figure 8 we examined the relationships between the num-
ber of inputs/cycle (m) and the resource usage versus achieved
clock frequency. The curve for the clock frequency was well
approximated by 440 MHz/ (1 + 0.10 log4m+ 0.20m). The
clock frequency for m = 1 was limited by the BRAM access
and was excluded from the regression. It can be inferred that
the “logic only” frequency without BRAM access is roughly
440/ (1 + 0.2) = 367 MHz. This value coincides well with the
maximum frequency achieved in [2] (362 MHz) on the same
device technology (Virtex4-40-12).

The time taken to translate a set of parsed regular expres-
sions to VHDL was roughly proportional to the product of the
number of states (n) and the size of multi-character input (m),
an observation agreeing with our analysis in Section IV-A. On
a 2 GHz Athlon 64 PC, it took 3 to 6 seconds to translate 768

2Due to our use of BRAM for character classification, every character class,
no matter how simple or complicated it is, takes exactly 256 BRAM bits and
is matched by one BRAM access. Since the complexity of character classes
does not affect performance, our benchmark generator assigns arbitrary values
to the character classes without loss of generality.
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Fig. 8. Clock rate and LUT usage of 267 Snort REMEs on Virtex 4 LX-40-
12. Squares (left scale) are clock rate; trangles (right scale) are LUT usage
in thousands.

Snort REMEs (18715 states) to VHDL, as m increased from
2 to 8. In all cases, about 1/3 of the time was used for file
I/O.

These results show that the algorithms proposed in this
paper are suitable for large-scale translation of regular expres-
sions into VHDL. With ∼ 80% slice usage (∼ 27k 4-LUTs)
on the Virtex LX-40, a throughput of more than 10 Gbps was
achieved for 267 REMEs in parallel. Furthermore, in practice,
it takes only a few seconds for the algorithms to translate
hundreds of REMEs into structural VHDL.

C. Construction of Synthetic REMEs

We first used the benchmark generator described in Sec-
tion V-A to produce synthetic regular expressions of different
numbers and complexities, then use our REME construction
tools to convert the synthetic regular expressions into 2-
character input REME circuits in VHDL. We synthesized the
VHDL into Xilinx NGC targeting the Virtex 4 LX device
family, and extracted the estimated clock frequency from the
timing analysis.

Figure 9 shows clock frequency and LUT usage versus
length of REMEs. Series concat1 was produced by one long
string of concatenations; series union2 was produced by a

Fig. 10. Clock frequency and LUT usage of group of 64-state synthetic
REMEs versus number of REMEs implemented. Solid lines (left scale) are
clock frequencies; dashed lines (right scale) are number of LUTs.

union of two equal-length concatenations. In each test case, 6
identical REMEs were placed into a single stage.

Series union2 ran at lower clock frequency than series
concat1 due to the use of the union operator, which caused
union2 to have twice the state fan-in as concat1. The clock
rates of both series started to decline linearly with respect to
REME length around 32 to 40 states per REME. This decline
was due to the longer routes to access BRAM for centralized
character classification. This is evidenced by the fact that both
concat1 and union2 ran at about the same clock rates beyond
the length of 40 states, showing a bottleneck elsewhere from
the state transitions within the logic slices of FPGA.

In Figure 10, we analyzed the effect of the number of
REMEs on achieved clock frequency and total LUT usage. In
each test case, 64 states were generated for each REME; 30
states were wrapped inside a closure operator, which was
then union-ed with a sequence of 30 other states and con-
catenated with the last 4 states in sequence. In the w−union
series, w = 1, 2, or 3, the 30 states inside the closure
operator were further wrapped by a union of w operands,
each 30/w states in length. The purpose was to see how clock
rate scaled with respect to number of REMEs for different
REME complexities.

As shown in Figure 10, clock frequency declined between
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15% to 25% when number of REMEs varied from 1 to 16.
Since the added regular expressions were all identical, this
decline was again due to longer BRAM access, caused by
both longer routes and larger fan-out.

Above 16 REMEs, however, our staged pipeline came into
effect, keeping the clock rates at slightly above 300 MHz.
This evidently shows that the staged pipeline we propose
was effective in scaling up number of REMEs in a single
circuit. LUT usage maintained linear increase with respect to
the number of REMEs.

Figure 11 shows clock frequency versus state fan-in. In each
test case, REMEs of 52 states were constructed, with 24 states
put inside a union of w operands, w varying from 1 (single
24-state sequence) to 12 (union of 2-state sequences). For the
has_loop series, there was also a loop-back transition from
the outputs of the 24-state union back to the inputs of the
union itself. There was no such loop-back for the no_loop
series.

The clock frequency was found to decline sub-linearly with
respect to the state fan-in, at a rate consistent with the findings
in Section V-B. The decline however was not completely
smooth because the logic gates on the FPGA device were
organized as 4-input LUTs - fan-ins of size multiples of 4
tend to perform better than others. The loop-back transition
around the union operator (the has_loop series) connected
the output of every operand to the input of every operand.
This resulted in more complex routing and further impacted
the clock frequency.

Overall we observed that the REME construction algorithms
proposed here generated FPGA circuits with high clock fre-
quency and high LUT efficiency for large number of regular
expressions and high REME complexities.

VI. CONCLUSIONS

We presented the architecture and algorithms to con-
struct high-performance regular expression matching engines
(REMEs) on FPGA. We developed tools that convert a large
number of regular expressions automatically into REMEs in
VHDL, which could be accepted directly by FPGA synthesis
and implementation tools. We also developed a benchmark
generator to produce REMEs of different complexities, and
used it to test the performance of our proposed architecture.

Our REME construction algorithms resulted in a circuit that
utilizes both logic slices and block memory (BRAM) available
on modern FPGA devices to achieve high REME density. It
can be stacked in a space-extensive fashion to match multiple
input characters per clock cycle. Our 2-dimensional staged
pipeline effectively localized signal routing and achieved a
clock rate over 300 MHz, processing hundreds of REMEs in
parallel. Extensive studies showed that our tools and proposed
algorithms are efficient and effective in realizing large-scale
regular expression matching on FPGA.
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