
High-Performance Designs for Linear Algebra
Operations on Reconfigurable Hardware

Ling Zhuo and Viktor K. Prasanna, Fellow, IEEE

Abstract—Numerical linear algebra operations are key primitives in scientific computing. Performance optimizations of such
operations have been extensively investigated. With the rapid advances in technology, hardware acceleration of linear algebra
applications using field-programmable gate arrays (FPGAs) has become feasible. In this paper, we propose FPGA-based designs for
several basic linear algebra operations, including dot product, matrix-vector multiplication, matrix multiplication, and matrix
factorization. By identifying the parameters for each operation, we analyze the trade-offs and propose a high-performance design. In
the implementations of the designs, the values of the parameters are determined according to the hardware constraints, such as the
available chip area, the size of available memory, the memory bandwidth, and the number of I/O pins. The proposed designs are
implemented on Xilinx Virtex-II Pro FPGAs. Experimental results show that our designs scale with the available hardware resources.
Also, the performance of our designs compares favorably with that of general-purpose processor-based designs. We also show that,
with faster floating-point units and larger devices, the performance of our designs increases accordingly.

Index Terms—Reconfigurable hardware, computations on matrices, parallel algorithms.

˙

1 INTRODUCTION

WITH the advances of technology, reconfigurable hard-
ware such as field-programmable gate array (FPGA)

has become much more powerful than before. For example,
one Xilinx Virtex 5 FPGA contains millions of gates, several
megabytes of on-chip memory, and a large number of
hardware primitives, such as fixed-point multipliers [1].
Therefore, a current FPGA can hold up to several tens of
floating-point units and can perform multiple I/O opera-
tions concurrently. Such spatial parallelism has made
FPGAs highly competitive with general-purpose processors
in many areas, including scientific computing [2], [3], [4],
imaging applications [5], [6], cryptology [7], and commu-
nication [8], [9]. Meanwhile, vendors have begun to use
FPGAs for high-performance computing. For example,
Cray [10], SRC Computers [11], and SGI [12] have
developed reconfigurable supercomputers that employ
FPGAs as application accelerators.

Numerical linear algebra operations are fundamental to
a broad range of scientific applications. The performance
improvement of these operations has always been of
interest to researchers [13], [14]. As these operations are
usually loop oriented and data oblivious, they are suitable
for hardware acceleration. Moreover, their FPGA-based
implementations can achieve high performance [15], [16].

However, FPGAs also pose new challenges in imple-
menting (floating-point) linear algebra operations. Limita-
tions in the available resources, such as the number of

slices, the size of available memory, and the number of I/O
pins, impose multiple constraints on the architectural
design. These constraints, as well as the inherent character-
istics of the operations, result in various design trade-offs.
In addition, an FPGA may have access to multiple types of
memory with various capacities and bandwidths (on-chip
memory, onboard memory). Efficient utilization of these
memory is also a key issue.

In this work, we analyze design trade-offs and propose
high-performance FPGA-based designs for several linear
algebra operations, including dot product, matrix-vector
multiplication, matrix multiplication, and matrix factoriza-
tion. These operations serve as basic building blocks for
many numerical linear algebra applications, including the
solution of linear systems of equations, linear least square
problems, and eigenvalue problems [17], [18]. For each
operation, we analyze its inherent characteristics, such as
the number of floating-point operations and I/O operations
required, and identify various design parameters. By
exploring the design space, we analyze the design trade-
offs among area, latency, and storage size. We then propose
a design for each operation that effectively utilizes the
available memory and achieves the optimal latency under
the given hardware resources. As the proposed designs are
generic, they can be applied to various FPGA devices.

The design for each operation is characterized through
various parameters, such as the number of floating-point
units, the required storage size, and the block size. The
parameters can be tuned according to the hardware
resource constraints, including the available chip area, the
size of available memory, and the number of I/O pins. For
both dot product and matrix-vector multiplication, we use
a tree-based architecture. For matrix multiplication and
matrix factorization, we employ a linear array architecture
with multiple Processing Elements (PEs). Block algorithms
are employed to reduce the requirements on the storage

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 8, AUGUST 2008 1057

. The authors are with the Ming Hsieh Department of Electrical
Engineering, University of Southern California, 3740 McClintock Ave.,
Los Angeles, CA 90089. E-mail: {lzhuo, prasanna}@usc.edu.

Manuscript received 28 Feb. 2007; revised 28 Sept. 2007; accepted 19 Feb.
2008; published online 28 Mar. 2008.
Recommended for acceptance by T. El-Ghazawi.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2007-02-0061.
Digital Object Identifier no. 10.1109/TC.2008.55.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: University of Southern California. Downloaded on March 2, 2009 at 23:14 from IEEE Xplore. Restrictions apply.

size or the memory bandwidth. Although our work is not
dependent on data representation, we consider IEEE-754
double-precision numbers throughout this paper [19].

We implemented our proposed designs using Xilinx
ISE 7.2i [1] on Xilinx Virtex-II Pro FPGAs. For all of the
designs, the area increases linearly with the number of
floating-point units used. Moreover, the latency decreases
almost proportionally with the number of floating-point
units if adequate memory bandwidth is provided. On the
other hand, the required storage size and the required
memory bandwidth are determined by both the number of
floating-point units and the block size. Experimental results
show that, using a Xilinx Virtex-II Pro XC2VP100, our design
for matrix multiplication achieves 4 Gflops, which compares
favorably with the optimized routine on a 2.2 GHz AMD
Opteron processor. For LU decomposition, our design
achieves more than 3 Gflops, which is higher than the
sustained performance of an AMD Opteron processor.

In our experiments, we used our own floating-point
units, which were not engineered for area or speed
performance. As the performance of these units improves,
the performance of our design will increase accordingly. In
particular, we project that our designs can achieve up to
19.5 and 11.7 Gflops for matrix multiplication and LU
decomposition on an XC2VP100, respectively. We have also
implemented our design for matrix multiplication on one
chassis of Cray XD1 [10]. With six medium size Xilinx
FPGAs, our design can achieve up to 12 Gflops.

The rest of this paper is organized as follows: Section 2
introduces the background and the related work. Section 3
presents our design approach. Section 4 proposes our
designs for the linear algebra operations. Section 5 presents
and analyzes the performance of our designs. Section 6
concludes this paper.

2 BACKGROUND AND RELATED WORK

2.1 Linear Algebra Libraries
The set of Basic Linear Algebra Subprograms, which is
commonly referred to as BLAS [14], has been used in a
wide range of software. BLAS provide building block
routines for performing basic vector and matrix operations.
Optimizations for the BLAS library on general-purpose
processors include loop unrolling, register blocking, and
cache blocking [20]. Since many of the optimizations are
platform specific, ATLAS was proposed, which automati-
cally generates and optimizes numerical software for
processors with deep memory hierarchies and pipelined
functional units. In this work, we consider FPGA-based
designs for several BLAS operations, including dot pro-
duct, matrix-vector multiplication, and matrix multiplica-
tion. Our designs are device independent and can adapt to
various hardware resource constraints.

Another important linear algebra library is the Linear
Algebra PACKage (LAPACK) [21]. This library provides
routines for solving systems of simultaneous linear equa-
tions, least-squares solutions of linear systems of equations,
eigenvalue problems, and singular value problems. The
associated matrix factorizations (LU, Cholesky, QR, SVD,

Schur, generalized Schur) are also provided. In this paper,
we consider the LU method.

There has also been extensive research on high-perfor-
mance linear algebra libraries on parallel systems [22], [23].
One of the most widely used libraries on distributed-
memory MIMD systems is Scalable LAPACK (ScaLA-
PACK) [22]. ScaLAPACK implements a subset of LAPACK
routines, including routines for solving systems of linear
equations, least squares problems, and eigenvalue pro-
blems. In ScaLAPACK, the block-cyclic data layout has
been selected for dense matrices. Such a layout can
minimize the frequency of data movement between
different levels of the memory hierarchy. The computa-
tional model of ScaLAPACK consists of a one or two-
dimensional processor grid, where each process stores
pieces of the matrices and vectors. In ScaLAPACK, a
message-passing library designed for linear algebra called
Basic Linear Algebra Communication Subprograms
(BLACS) is used for interprocess communication.

The above work utilizes the parallelism of multiple
computer processors. In contrast, our work exploits the
spatial and temporal parallelism on one reconfigurable
hardware device. Instead of using message passing, multi-
ple PEs communicate through routing wires on the device.
Moreover, unlike the general-purpose processors, FPGAs
have direct control of their on-chip memory and onboard
memory. Therefore, we need to address new design trade-
offs that do not exist in the current work on parallel and
distributed systems.

2.2 Field-Programmable Gate Arrays
FPGAs are a form of programmable logic. They offer design
flexibility like software, but with time performance closer to
application-specific integrated circuits (ASICs) [24]. An
FPGA device consists of an array of logic blocks (slices)
whose functionality is determined through programmable
configuration bits. These logic blocks are connected using a
set of routing resources that are also programmable. Thus,
mapping an appropriate design onto FPGAs consists of
determining the functions to be computed by the logic
blocks and using the configurable routing resources to
connect the blocks.

In the past, FPGAs were mainly used for integer and
fixed-point applications. However, with their ever-increas-
ing computing power, FPGAs are now useful for a much
broader range of applications, including those requiring
floating-point arithmetic. Floating-point units with various
precisions have been designed [25], [26]. FPGA-based
architectures have also been proposed for computationally
intensive applications [27].

State-of-the-art FPGA devices contain a large amount of
on-chip memory, including memory that can be realized by
logic blocks and embedded memory blocks called Block
RAMs (BRAMs). Besides the on-chip memory, FPGA-based
designs also have access to onboard SRAM memory
through I/O pins. In recently developed high-end reconfi-
gurable supercomputers, an FPGA is also connected to the
DRAM memory of the general-purpose processors. Exam-
ples of such supercomputers include SRC MAPstation [11],
Cray XD1 [10], and SGI RASC [10], among others. In XD1,

1058 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 8, AUGUST 2008

Authorized licensed use limited to: University of Southern California. Downloaded on March 2, 2009 at 23:14 from IEEE Xplore. Restrictions apply.

each FPGA has access to four banks of QDR II SRAM at a
bandwidth of 12.8 Gbytes/s. Each FPGA can also access the
DRAM of the processors at a bandwidth of 3.2 Gbytes/s.

2.3 Linear Algebra on FPGAs
Many researchers have studied FPGA-based implementa-
tions of linear algebra operations. Some considered fixed-
point arithmetic only [28], [29], [30]. Due to the implementa-
tion complexity of the floating-point units, the work of these
researchers is not suitable for floating-point-based opera-
tions. In [15], we proposed a design for floating-point dense
matrix multiplication. For problem size n, the effective
latency of the design is �ðn2Þ, using a storage of size �ðn2Þ.
In [31], a block matrix multiplication algorithm was
discussed for large n and a floating-point Multiplier and
ACcumulator (MAC) was implemented. In [32], a tree-based
architecture was proposed for sparse matrix-vector multi-
plication (SMVM). The architecture achieves much higher
performance than implementations on the general-purpose
processors. A similar architecture was used in [33]. SMVM
has also been implemented on multiple FPGAs [34] and on a
reconfigurable computer [35]. In [36], a circular array
architecture was proposed for floating-point LU decomposi-
tion. It uses one floating-point divider and n � 1 floating-
point MACs. The latency of the design is n2 and the required
storage size is n2

2 . A design for block LU decomposition was
presented in [37] based on the architecture in [36]. In the
papers mentioned above, design trade-offs for linear algebra
operations are rarely discussed.

In [38], we analyzed the design trade-offs for several
BLAS operations on reconfigurable hardware. However,
only on-chip memory of the FPGA was used. In contrast,
the designs proposed in this paper also utilize the onboard
memory attached to the FPGA. Underwood and Hemmert
[3] examined the potential capacity of FPGAs in performing
floating-point BLAS operations and compared the comput-
ing capacity of FPGAs with that of the general-purpose
processors. In [3], only the number of I/O pins was
considered as a constraint. In this paper, we provide
analysis based on multiple hardware resource constraints.

3 DESIGN APPROACH

Our work is based on the computational model shown in
Fig. 1: The FPGA device contains on-chip memory
(BRAM) and has access to onboard memory (SRAM).
The total size of the BRAM is much smaller than that of
the SRAM. However, the BRAM bandwidth is much
larger than the SRAM bandwidth. The on-chip memory
and the onboard memory are used for internal storage of
the proposed architectures. The FPGA is also connected

to external (off-chip) memory (DRAM) of an even larger
size and smaller bandwidth. All of the source data are
stored in the external memory initially and the final results
are written back into the external memory. In our model,
the I/O costs refer to the time needed to exchange data
between the FPGA and the external memory.

We adopt a parameterized and flexible design approach
in our work. Our approach consists of two phases. In the
first phase, we examine the description of the operation,
including the number of floating-point operations required
and the amount of data to be exchanged with the external
memory. The design parameters are then identified. Some
of them concern the floating-point units used in the design,
such as their pipeline delays; some are for the entire
architecture, such as the storage size and the number of
floating-point units used. Based on the exploration of the
design space formed by the design parameters, an
optimized design is proposed. In the second phase, a
device is chosen and the hardware constraints are
determined. The constraints specify the available area, the
I/O pin count, the size of available memory, and the
memory bandwidth. We then select appropriate values for
the parameters in the design. In this way, we generate an
optimal design which is independent of the device used
and then adapt the design to a specific hardware device.
The design flow is shown in Fig. 2.

In our discussion, we use the following mathematical
notations:

. u, v, x, y: vectors of length n; each vector can be
either a column vector or a row vector, according to
the context;

. A, B, C: n � n matrices, with elements aij; bij; cij
ði; j … 0; . . . ; n � 1Þ;

. �, �, �: pipeline delays of the floating-point adder/
subtractor, the floating-point multiplier, and the
floating-point divider, respectively;

. w, wj: number of bits in a floating-point word and a
column index, respectively;

. k, l: number of floating-point multiplications and
floating-point additions/subtractions performed in
each clock cycle, respectively;

. bw, bwb, bws: number of data words (double
precision floating-point) that are input/output of
the external memory, on-chip memory, and onboard
memory in each clock cycle, respectively;

. mb, ms: total size of on-chip memory and onboard
memory needed by the design, respectively;

ZHUO AND PRASANNA: HIGH-PERFORMANCE DESIGNS FOR LINEAR ALGEBRA OPERATIONS ON RECONFIGURABLE HARDWARE 1059

Fig. 1. Computational model used in this work.

Fig. 2. Design flow.

Authorized licensed use limited to: University of Southern California. Downloaded on March 2, 2009 at 23:14 from IEEE Xplore. Restrictions apply.

. T : number of clock cycles needed to complete the
operation;

. Tcomp, TI=O: number of clock cycles needed for
floating-point computations and I/O with the
external memory, respectively.

4 FPGA-BASED DESIGNS FOR LINEAR ALGEBRA
OPERATIONS

4.1 Dot Product
We first consider the dot product of two vectors. The
operation can be formulated as

u � v …
Xn�1

i…0
uivi:

4.1.1 Operation Analysis
For dot product, the minimum number of external I/O
operations is 2n þ 1. There are n floating-point multiplica-
tions and n floating-point additions. We can easily identify k
and l as the design parameters because they affect Tcomp. Since
there is no data reuse in this operation, no on-chip memory or
onboard memory is needed by the design. To reduce the
latency, we overlap Tcomp and TI=O. Furthermore, we
overlap the floating-point multiplications and additions.
Therefore, the lower bound on the latency of the operation
(in cycles) is derived as

T � maxðTcomp; TI=OÞ � max max
n
k

;
n
l

� �
;
2n þ 1

bw

� �
:

4.1.2 Architecture
To achieve the lower bound, k … l and k � bw

2 . Thus, we
propose an architecture which consists of an identical
number of floating-point adders and multipliers. The
floating-point adders and multipliers are pipelined so that
additions, multiplications, and external I/O operations are
overlapped. Moreover, pipelining for the adder and multi-
plier results in high clock speed.

During a clock cycle, each multiplier reads one element
from each of the vectors and multiplies these two floating-
point numbers. An adder tree then sums up the outputs of
the multipliers. When k < n, we need an additional adder
to accumulate the outputs of the adder tree. Thus, we use
k adders, including the k � 1 adders in the adder tree and
the additional adder. If we ignore the clock cycles used to
fill the pipelines of the multipliers and the adders, the
effective latency of the architecture T … n

k .
The adder tree in the architecture yields one output each

clock cycle. Thus, the task of the additional adder is to
reduce sets of sequentially delivered floating-point values.
However, the pipelining in the floating-point adder can
cause read-after-write hazards during the reduction. There-
fore, we replace the additional adder outside the adder tree
using a reduction circuit proposed in [39]. The character-
istics of the reduction circuit are presented in Section 5.
Here, we use TredðsÞ to denote the time needed to reduce
s values and Treds … �ðsÞ.

The architecture for dot product is shown in Fig. 3. The
effective latency of the design is

T …
n
k

þ Tred
n
k

� �
… �

n
k

� �
: ð1Þ

The design performs 2k þ 1 external I/O operations
during each clock cycle, that is, bw … 2k þ 1. The number of
I/O pins used is ð2k þ 1Þw.

4.2 Matrix-Vector Multiplication
We next study matrix-vector multiplication, which is
formulated as

y … Ax; yi …
Xn�1

j…0
aijxj ði … 0; 1; . . . ; n � 1Þ:

4.2.1 Operation Analysis
In matrix-vector multiplication, the total number of float-
ing-point operations is 2n2. As in the case of dot product,
we identify k and l as the design parameters.

In this operation, each element in x can be reused
n times. If we do not store any element of x in the
architecture, the total number of external I/O operations is
2n2. To partially reduce the I/O costs, we use block matrix-
vector multiplication. Thus, a new parameter, b, needs to be
introduced. Without loss of generality, we assume n is a
multiple of b. In the blocked version, A is partitioned into
n
b blocks of columns, with each block of size n � b.
Similarly, x is partitioned into n

b blocks of size b � 1. We
denote the blocks using Ag and xg, respectively
ðg … 0; 1; . . . ; n

b � 1Þ. For each block matrix-vector multi-
plication Ag � xg, Ag and xg need to be read from and the
results need to be written to the external memory. Therefore,
the total number of external I/O operations with block size b
equals n

b � ðnb þ b þ nÞ … n2 þ n2

b þ n.
We set k … l to reduce Tcomp. The lower bound on the

latency of the operation is

T � maxðTcomp; TI=OÞ � max
n2

k
;
n2 þ n2

b þ n
bw

 !

:

1060 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 8, AUGUST 2008

Fig. 3. Architecture for dot product ðk … 4Þ.

Authorized licensed use limited to: University of Southern California. Downloaded on March 2, 2009 at 23:14 from IEEE Xplore. Restrictions apply.

The above equation shows a design trade-off between
the block size and the I/O time. The smaller the block size,
the more external I/O operations are required and vice
versa. Another trade-off exists between the storage size and
the data access time. If we store one copy of xg in the
architecture only, reading k distinct values from the
internal storage takes multiple clock cycles. On the other
hand, if xg is duplicated at each multiplier, each multiplier
can access the needed data in one clock cycle. In this case,
the storage size is increased to kb.

4.2.2 Architecture
Based on the design trade-offs, we propose an architecture
for matrix-vector multiplication, as shown in Fig. 4. This
architecture is almost the same as the architecture for dot
product except that each multiplier is attached to a local
storage. Each local storage contains a copy of xg. During the
computation, the multiplier reads one element from Ag in
each clock cycle, then uses the column index to find the
corresponding xg element in its local storage, and, finally,
multiplies these two numbers. Initially, the storage is
loaded with x0. To reduce the latency, the initialization of
block xg is overlapped with the computations of Ag�1 �
xg�1 ðg … 1; . . . ; n

b � 1Þ. In the architecture, k words are read
out of the local storage in each clock cycle. As k can be
large, the local storage is realized using on-chip memory
because the available BRAM bandwidth is much larger
than the available SRAM bandwidth.

When b > k, one row in Ag is further partitioned
into b

k subrows which are fed into the architecture in
order. A reduction circuit is used in the architecture to
accumulate the sums of the subrows. To generate the
final y, we also need to accumulate the results
generated by A0 � x0; A1 � x1; . . . ; An

b�1 � xn
b�1. For each

y element, such intermediate results are generated every
n clock cycles. Since the typical value of � is less than 20
and is usually much smaller than n, an additional floating-
point adder suffices for such accumulation.

The effective latency of our design is

T … ðb þ kÞ þ
n � b

k
þ k

� �
�

n
b

� 1
� �

þ
n � b

k
þ Tred

b
k

� �

…
n2

k
þ

nk
b

þ b þ Tred
b
k

� �
… �

n2

k

� �
:

ð2Þ

The design needs to perform bw � k þ k
b external floating-

point I/O operations during each clock cycle. The total size of
on-chip memory needed by the design is mb … kb and the
required bandwidth is bwb … k. The number of I/O pins used
is kðw þ wjÞ þ 2w: Each multiplier reads one element of A and
its column index in each clock cycle; the first multiplier reads
one element of x per clock cycle for initialization. We can also
reduce the required number of I/O pins by using a counter to
keep track of the column index.

In the architecture in Fig. 4, A is stored in row-major
order. If A is stored in column-major order, another
architecture can be used, as shown in Fig. 5. In the second
architecture, there are k adders. Each adder is connected to
a multiplier and is attached to a local storage, which stores
the intermediate results of some elements of vector y. In
particular, the pth adder ðp … 0; 1; . . . ; k � 1Þ stores the
intermediate results of elements p; k þ p; . . . ; ðn

k � 1Þk þ p of
vector y. During each clock cycle, the k multipliers multiply
k distinct elements of A with one element of x. The adders
then accumulate the results of the multiplications with the
intermediate results of y stored in the local storage. In this
case, the intermediate result of yi ði … 0; 1; . . . ; n � 1Þ is
updated every n clock cycles. Therefore, as long as n is
larger than �, data hazards do not occur. For block matrix-
vector multiplication, matrix A is partitioned into b � n
blocks and y is partitioned into b � 1 blocks. Each A block is
read in column-major order and multiplied with vector x to
generate the corresponding y block.

The latency and the required on-chip memory of these
two architectures are the same. However, the tree-based
architecture can be extended for SMVM much more easily
than for the architecture in Fig. 5 [32].

ZHUO AND PRASANNA: HIGH-PERFORMANCE DESIGNS FOR LINEAR ALGEBRA OPERATIONS ON RECONFIGURABLE HARDWARE 1061

Fig. 4. Tree-based architecture for matrix-vector product ðk … 4Þ.

Fig. 5. Second architecture for matrix-vector product ðk … 4Þ.

Authorized licensed use limited to: University of Southern California. Downloaded on March 2, 2009 at 23:14 from IEEE Xplore. Restrictions apply.

4.3 Matrix Multiplication
Dense matrix multiplication is formulated as

C … AB; cij …
Xn�1

p…0
aipbpj ði; j … 0; 1; . . . ; n � 1Þ:

4.3.1 Operation Analysis
The total number of floating-point operations is 2n3. As
each element of A and B is used n times, the total number
of external I/O operations is 2n2. Because of the data reuse,
the size of internal storage for intermediate results needed
by the design becomes an important design parameter. We
use I/O complexity to refer to the total number of external
I/O operations performed by an algorithm. It has been
proven that the I/O complexity of any implementations of
the usual matrix multiplication algorithm is �ð n3���

m
p Þ, when

�ð1Þ � m � �ðn2Þ, where m is the size of the internal
storage [41].

Again, we set k … l to optimize Tcomp. The lower bound
on the latency of matrix multiplication is

T � maxðTcomp; TI=OÞ � max
n3

k
;
n3=

�����
m

p

bw

� �
ðm � n2Þ:

Thus, trade-offs exist among the number of PEs, the total
size of on-chip memory, and the required memory band-
width. According to the above equation, when m � n2, the
latency of an algorithm is bounded by TI=O even if k > n. On
the other hand, when m > n2, T is bounded by Tcomp if k � n2.
In this work, we consider cases where k � n; m � n2 and T is
determined by both Tcomp and TI=O.

We have proposed an FPGA-based design for matrix
multiplication in [40], as shown in Fig. 6. In the design,

there are k PEs connected in a linear array. The first PE,
PE0, is connected to the external memory. Each PE contains
one floating-point multiplier, one floating-point adder, and
2
�����
2m

p

k registers. Each PE also has two local storage units of
size m

2k for storing the intermediate results and final results
of C. These storage units are realized using the on-chip
memory. Using the design in [40], the effective latency of
performing matrix multiplication is �ðn3

k Þ. The required
memory bandwidth is 3k�������

m=2
p words per clock cycle. We

have proven that the design achieves the theoretical lower
bounds on the latency and memory bandwidth under the
given storage size and the number of PEs.

However, the design in [40] utilizes the on-chip memory
only. If the onboard memory is also used, we can take
better advantage of the data reuse in matrix multiplication
so as to further reduce the requirement on the external
memory bandwidth.

4.3.2 Proposed Design
In this paper, we propose an architecture that employs both
the on-chip memory and the onboard memory. We first
partition matrices A and B into b2 � b2 blocks. These blocks
are denoted as Aiq and Bqj, i; j; q … 0; 1; . . . ; n

b2
� 1. Each Aiq

ðBqjÞ is further partitioned into smaller blocks of size b1 � b1,
which are denoted as Aiq

gz and Bqj
zh, g; h; z … 0; 1; . . . ; b2

b1
� 1.

Without loss of generality, we assume n is a multiple of b2
and b2 is a multiple of b1.

The proposed architecture is shown in Fig. 7. It contains
the matrix multiplication design described in [40], which is
labeled as “MM” in the figure. MM performs Aiq

gz � Bqj
zh and

generates part of Cij
gh. The result of MM is given to a

floating-point adder and is added to the intermediate result
of Cij

gh, C0ij
gh . The local storage units of the PEs in MM are

implemented using the on-chip memory of the FPGA.
Thus, we have mb … 2b2

1. The architecture uses one storage
unit of size b1 � b2 to store elements in Bqj. It also contains
one storage unit of size b2

2 to store the intermediate results
Cij. These storage units are implemented using SRAM.
Therefore, we have ms … b2

2 þ b1b2.

1062 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 8, AUGUST 2008

Fig. 6. Architecture for matrix multiplication proposed in [40].

Fig. 7. Architecture for matrix multiplication.

Authorized licensed use limited to: University of Southern California. Downloaded on March 2, 2009 at 23:14 from IEEE Xplore. Restrictions apply.

In the proposed design, Aiq is read in column-major
order and Bqj is read in row-major order. The computation
starts by reading the first row of b1 � b1 blocks of Bqj into
the FPGA. These blocks are stored in the onboard memory.
Afterward, every b2

1b2
k clock cycles, one block of Aiq and one

block of Bqj are read into the architecture. Aiq
gz is multiplied

by MM with b2
b1

blocks of Bqj stored in the FPGA. The output
of MM is accumulated with the stored intermediate results
by the adder in the architecture. If the adder generates a
final element of C, the element is output to the external
memory; otherwise, the element is written back to the
storage unit.

The effective latency of each b1 � b1 block equals b3
1
k [40].

In our design, ðn
b1

Þ3 block matrix multiplications are
performed. Including the time for inputting the first row
of Bgj, the total latency of our design is

T …
b2

b1
� b2

1 þ
n
b1

� �3

�
b3

1
k

… �
n3

k

� �
: ð3Þ

To achieve the latency, one b1 � b1 block of Aiq and
one block of Bqj are read from the external memory
every b2

b1
� b3

1
k cycles. The design outputs b2

2 words to the
external memory every b3

2
k cycles. Thus, the required

external memory bandwidth is bw … 3k
b2

. Each PE in MM
reads one word and writes one word to each of its two local
storage units; hence, bwb … 4k. As for the onboard memory,
one b1 � b1 block of Bqj is written into it every b2

b1
� b3

1
k cycles.

Also, in every clock cycle, two intermediate results of Cij

are read from and written to it. Thus, bws … 2 þ k
b2

.

4.3.3 Design for Multiple FPGAs
The proposed design can also be implemented on multiple
FPGAs. In this case, k0 FPGAs are connected in a linear
array. The FPGAs are labeled from left to right, as
FPGA0; FPGA1; . . . ; FPGAk0�1. FPGA0 reads elements of
A and B from the external memory and the elements traverse
the linear array of FPGAs. During the computations, as the
b2
b1

blocks of Bqj traverse the linear array of FPGAs, FPGAf

stores blocks f; ðk0 þ fÞ; . . . ; ðð b2
b1k0 � 1Þk0 þ fÞ into the onboard

memory. As Aiq
gz passes through, it is multiplied by MM with

b2
b1k0 blocks of Bqj stored in the FPGA. The final results of C
traverse the linear array from right to left and are written back
to the external memory by FPGA0.

In this design, each FPGA is attached to its own
onboard memory. The storage unit for the elements in Bqj

is now of size b1b2
k0 ; the storage unit for the intermediate

results of Cij is of size b2
2

k0 . When a final element of C is
generated, it is transferred to FPGAf�1 if f > 0; other-
wise, it is written to the external memory. Each FPGA
generates b2

2
k0 final elements of C in. When FPGAf is

transferring these elements (f > 0) or writing them to the
external memory ðf … 0Þ, the elements transferred to the
FPGA from its right neighbor need to be stored. Therefore,
the architecture needs another storage unit of size b2

2
k0 for

the final results of C. This storage is also implemented
using the onboard memory.

The architecture is shown in Fig. 8. When k0 FPGAs
are employed, each FPGA performs n3

b3
1k0 block matrix

multiplications. Therefore, the effective latency of the
design is �ðn3

kk0Þ.

4.4 Matrix Factorization
For matrix factorization, we study LU decomposition. It is
the most widely used factorization method and is included
in LAPACK [21]. LU decomposition is used extensively for
solving large linear systems and calculating the inverse
matrix. As a direct method, it provides a much more
accurate and numerically robust solution than the iterative
methods. In cases where iterative methods are preferable
(for example, where the matrix is very large), LU decom-
position is used to provide an original solution for iterative
improvement.

LU factors an n � n matrix A into an n � n lower
triangular matrix L (the diagonal entries are all 1) and an
n � n triangular matrix U . We use aij, lij, and uij to denote
the elements of A, L, and U , respectively ð0 � i; j � n � 1Þ.
In [42], a sequential algorithm for LU decomposition is
discussed. It consists of three main steps, which are listed
below. As is customary in hardware implementations of
matrix factorization, we assume no pivoting is needed:

. Step 1: The column vector ai0 ð1 � i � n � 1Þ is
multiplied by the reciprocal of a00. The resulting
column vector is li0. u0j equals a0j ð1 � j � n � 1Þ.

. Step 2: li0 is multiplied by the row vector u0j. The
product is subtracted from the submatrix aij
ð1 � i; j � n � 1Þ.

. Step 3: Steps 1 and 2 are recursively applied to the
new submatrix generated in Step 2. During the
qth iteration, liq and uqj ðq þ 1 � i; j � n � 1Þ are
generated. When q … n � 1, the decomposition is
complete.

ZHUO AND PRASANNA: HIGH-PERFORMANCE DESIGNS FOR LINEAR ALGEBRA OPERATIONS ON RECONFIGURABLE HARDWARE 1063

Fig. 8. Architecture for matrix multiplication on multiple FPGAs.

Authorized licensed use limited to: University of Southern California. Downloaded on March 2, 2009 at 23:14 from IEEE Xplore. Restrictions apply.

4.4.1 Operation Analysis
During the qth iteration, ðn � 1 � qÞ2 multiplications and
subtractions and ðn � 1 � qÞ divisions are performed.
Therefore, LU decomposition requires, in total,

Pn�1
q…0 ðn �

1 � qÞ � n2

2 divisions,
Pn�1

q…0 ðn � 1 � qÞ2 � n3

3 multiplica-
tions, and n3

3 additions/subtractions each. Because of the
large area of the FPGA-based floating-point divider, we
perform at most one division during each clock cycle. For
multiplications and additions/subtractions, we set k … l.

It has been shown that the upper bound on the I/O
complexity of LU decomposition is the same as that of
matrix multiplication and pivoting does not change the
upper bound [43]. Thus, the lower bound on the latency of
LU decomposition is

T � maxðTcomp; TI=OÞ � max max
n3

3k
;
n2

2

� �
;
n3=

�����
m

p

bw

� �

ðm � n2Þ:

Similarly to matrix multiplication, we consider only cases
where k � n and m � n2.

There is a trade-off between the storage size and the
latency of a design. For example, in the design in [36], there
are n PEs and PEp contains a storage of size n � p
ð1 � p � n � 1Þ. Thus, the required storage size is n2

2 words.
However, in that design, not all PEs are working during each
clock cycle. In particular, only for the last column are all n PEs
working in parallel. Thus, the latency of the design is about
twice the minimum latency of LU decomposition with the
given hardware resources. On the other hand, if we store all
intermediate results of a0

xy, the storage size is increased to
n2 words. However, in this case, we can utilize the
computational parallelism better and achieve lower latency.

4.4.2 Proposed Design
We first assume our design employs the on-chip memory
only. The architecture of our design is shown in Fig. 9. It
contains a circular linear array of k þ 1 PEs. The PEs are
labeled as PE0; PE1; . . . ; PEk from left to right. Each PE has

two input ports and two output ports. These ports are
denoted as inL, outL, inU , and outU , respectively. Each PE
is connected only to its neighboring PEs, while PEk is
connected to PEk�1 and PE0. Initially, matrix A is stored in
the external memory. When LU decomposition is complete,
matrices L and U are written back to the external memory.

PE0 contains a floating-point divider and a storage unit
of size n words to store uii ð0 � i � n � 1Þ. This storage unit
is denoted as S0. PEp ð1 � p � kÞ contains a floating-point
multiplier and a floating-point adder/subtractor. PEp uses
two storage units: S1p is of size ðn�1Þ2

k and stores the
intermediate results, a0

ij. S2p is of size n�1
k and stores uqj in

the qth iteration

1 � q � n � 1; j … p; p þ k; . . . ; p þ
n � 1

k
� 1

� �
k

� �
:

For simplicity, we assume n � 1 is a multiple of k.
Our algorithm contains n � 1 iterations. During each

iteration, the architecture goes through three stages. In
Stage 1 of the qth iteration, aq;qþ1; aq;qþ2; . . . ; aq;n�1
traverse the linear array ð0 � q � n � 2Þ through ports
inU and outU . PEp performs uqj … aqj � a0

qj, where
j … p; p þ k; . . . ; p þ ðn�1

k � 1Þk. The resulting elements of U
are stored in S2p ð1 � p � kÞ and will be used in Stage 3.

In Stage 2, aqq; aqþ1;q; . . . ; an�1;q enter the architecture
through port inU and a0

iq … aiq � a0
iq is performed

ðq � i � n � 1Þ. These a0
iq traverse along the circular

array through ports outL and inL. After they reach
PE0, they are divided by a0

qq ð… uqqÞ to generate liq.
These elements of L are then used in the next stage.
Note that, when q … 0, li0 … ai0 ð1 � i � n � 1Þ. During
Stage 3, lqþ1;q; lqþ2;q; . . . ; ln�1;q are fed into PE1 through
port inL. Each of them is multiplied with the elements stored
in S2p in PEp ð1 � p � kÞ. The intermediate results in S1p are
updated using a0

ij … a0
ij þ liq � uqj ðq þ 1 � i; j � n � 1Þ.

In iteration q, Stage 1 takes ðn � q � 1 þ k þ �Þ cycles
and Stage 2 takes ðn � q � 1 þ k þ � þ �Þ cycles. Note that
there is no dependency between Stages 1 and 2. Thus,
Stage 2 can start right after aq;n�1 enters the architecture.
In this case, these two stages together need ð2ðn � q �
1Þ þ k þ � þ �Þ cycles. In Stage 3 of iteration q, liq needs
to be multiplied with at most dðn�q�1Þ

k e elements in each
PE ðq þ 1 � i � n � 1Þ. Thus, Stage 3 requires ðdðn�q�1Þ

k eðn �
q � 1Þ þ � þ �Þ cycles.

Therefore, the total latency of our design equals

T …
Xn�1

q…0
ð2ðn � q � 1Þ þ k þ � þ �Þ

þ
Xn�1

q…0

ðn � q � 1Þ
k

� �
ðn � q � 1Þ þ � þ �

� �

�
n
6k

ðn � 1Þð2n � 1Þ þ
1
2

ð3n2 � 3n � 2Þ

þ ð� þ 2� þ � þ kÞn

we use
ðn � q � 1Þ

k

� �
…

n � q � 1
k

þ 1; for all q
� �

�
n3

3k
; ðn > pÞ:

ð4Þ

1064 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 8, AUGUST 2008

Fig. 9. Architecture for LU decomposition.

Authorized licensed use limited to: University of Southern California. Downloaded on March 2, 2009 at 23:14 from IEEE Xplore. Restrictions apply.

In the design, mb … ðn � 1Þ2 þ n. As the design needs to
read n2 words from and write n2 words to the external
memory in n3

3k cycles, bw is approximately 6k
n .

4.4.3 Block LU Decomposition
When n2 is larger than the size of the available on-chip
memory, the block LU decomposition algorithm needs to be
used. In this algorithm, matrix A is partitioned into blocks of
size b1 � b1. The computation flow of the algorithm is similar
to that of the algorithm in [42] except that the basic
computational unit is now a block instead of a word.
Therefore, in the architecture for block LU decomposition,
we need one set of PEs for b1 � b1 matrix factorization, one set
of k2 PEs for b1 � b1 matrix multiplication, and a single PE for
matrix subtraction. Such an architecture is proposed in [37].

Suppose the number of PEs for matrix factorization and
matrix multiplication is k1 and k2, respectively. During block
LU decomposition, the PEs for matrix factorization are used
for about n2

b2
1

times and the PEs for matrix multiplication are
used for about n3

3b3
1

times. Thus, the latency of block LU
decomposition is determined by the latency of matrix
multiplication and is approximately n3

3k2
cycles.

The sets of PEs for matrix factorization and matrix
multiplication require storage of size b2

1 and 2b2
1, respec-

tively. Therefore, mb … 3b2
1. As each PE reads one word and

writes one word to each of its local storage units, bwb … 6k.
External bandwidth bw is approximately 2n2

n3=3k2
… 6k2

n . In-
cluding the output pins, the number of I/O pins is 3w.

4.4.4 Hierarchical Design
In the above discussion, only the on-chip memory of the
FPGA is used. To utilize the onboard memory, we employ a
hierarchical design. Matrix A is partitioned into blocks of
size b2 � b2, which are further partitioned into blocks of
size b1 � b1. The design in Section 4.4.3 is used to perform
b2 � b2 matrix factorization. For b2 � b2 matrix multiplica-
tion, our proposed design in Section 4.3 is employed and
the SRAM memory is used to store the intermediate results.
In this case, ms … 2b2

2 þ b1b2 and bws … 2 þ k
b2

2
.

5 PERFORMANCE ANALYSIS AND DISCUSSION

5.1 Experimental Setup
In our experiments, we used the Xilinx ISE 7.2i [1] and
Mentor Graphics ModelSim 5.7 [44] development tools.
Our target device was the Xilinx Virtex-II Pro XC2VP50 [1],
which contains 23,616 slices, about 4 Mbits of on-chip
memory and 852 I/O pins. Although it is a small device, it
serves the purpose of trade-off analysis. Moreover, it is
used in Cray XD1, in which we implemented our designs
on multiple FPGAs.

The building blocks used in our designs include a
floating-point adder, a floating-point multiplier, a floating-
point divider, and a reduction circuit. Table 1 gives the
characteristics of these blocks. Our floating-point units
comply with the IEEE-754 double-precision format [19] and
their implementation details can be found in [25]. The
reduction circuit used in our designs employs one floating-
point adder only and is presented in [39].

For each operation, we first determine the range for each
design parameter based on the hardware resource con-
straints. We then vary the values of the parameters and
measure the area and clock speed of the designs after place
and route. Next, the latency and the required memory
bandwidth are measured. The problem size n is set as 2,048
if not stated otherwise. We chose 2,048 because, in this case,
the source matrices cannot be stored in the on-chip memory
of the FPGA.

5.2 Experimental Results
5.2.1 Dot Product
For dot product, the only parameter is k, the number of
floating-point multiplications that can be performed in each
clock cycle. Since each multiplication needs two 64-bit
numbers, the range of k is determined by the number of
available I/O pins. For the target device, k � 6. In our
design, the control logic occupies less than 5 percent of the
total area. The clock speed of the design is limited by that of
the floating-point units, which is 170 MHz (Table 1). As
shown in Fig. 10, when k increases from 1 to 6, the area of
the design increases linearly. The latency of the design
decreases proportionally as k increases. When the clock
speed remains fixed, the required external memory
bandwidth also increases linearly with k.

5.2.2 Matrix-Vector Multiplication
For matrix-vector multiplication, we need to tune both k
and b. The range of k is determined by the total size of
available area and the area of the floating-point adder, the
floating-point multiplier, and the reduction circuit. For the
target device, k � 10. The area of the design increases
linearly with k, similarly to Fig. 10. The clock speed of the
design decreases with k. However, when k increases from 1
to 10, the degradation in the clock speed is less than
10 percent.

ZHUO AND PRASANNA: HIGH-PERFORMANCE DESIGNS FOR LINEAR ALGEBRA OPERATIONS ON RECONFIGURABLE HARDWARE 1065

TABLE 1
64-Bit Floating-Point Units and Reduction Circuit

Fig. 10. Area and latency for dot product ðn … 2; 048Þ.

Authorized licensed use limited to: University of Southern California. Downloaded on March 2, 2009 at 23:14 from IEEE Xplore. Restrictions apply.

