
StrideBV: Single Chip 400G+ Packet Classification

Thilan Ganegedara, Viktor K. Prasanna

Ming Hsieh Dept. of Electrical Engineering

University of Southern California

Los Angeles, CA90089

Email: {ganegeda, prasanna}@usc.edu

Abstract—Hardware firewalls act as the first line of defense in
protecting networks against attacks. Packets are organized into
flows based on a set of packet header fields and a predefined
rule is applied on the packets in each flow to filter malicious
network traffic. This is realized using packet classification, which
is implemented in secure networking environments where mere
best-effort delivery of packets is not adequate. Existing packet
classification solutions are highly dependent on the properties
(or features) of the ruleset. We present a bit vector based lookup
scheme and a parallel hardware architecture that does not rely on
ruleset features. A detailed performance analysis of the proposed
scheme is given under different configurations. Post place-and-
route results of our parallel pipelined architecture on a state-of-
the-art Field Programmable Gate Array (FPGA) device shows
that for real-life firewall rulesets, the proposed solution achieves
400G+ throughput. To the best of our knowledge, this is the first
packet classification engine that achieves 400G+ rate on a single
FPGA. Further, on the average we achieve 2.5× power efficiency
compared with the state-of-the-art solutions.

I. INTRODUCTION

Secure networking is becoming crucial with the various at-

tacks networks are being exposed to [13]. To protect networks

from such attacks, various hardware equipment as well as

software tools are being extensively used [11]. Packet clas-

sification and deep packet inspection (DPI) are implemented

in these systems to detect and neutralize potential threats by

discarding malicious traffic. Packet classification stands as the

initial filter to the network in which network traffic is classified

into flows based on a pre-defined set of rules. It requires the

inspection of multiple fields of the packet header compared

with best-effort IP forwarding where only the destination IP

address is inspected. Hence, it is more challenging especially

in environments where wire-speed processing of packets is

mandatory.

From a hardware perspective, the main bottleneck in imple-

menting packet classification engines has been the amount of

memory required to store the ruleset. Especially on platforms

such as Field Programmable Gate Arrays (FPGAs), on-chip

memory is limited and exploiting external memory is challeng-

ing in applications of this nature. To circumvent this, various

solutions have been proposed in the literature to reduce the

memory footprint of ruleset storage. Most, if not all, of these

solutions exploit some properties (or features) of the ruleset to

achieve memory efficiency [8], [5], [12], [14], [6]. While these

This work is supported by the United States National Science Foundation

under grant No. CCF-1116781. Equipment grant from Xilinx Inc. is gratefully

acknowledged.

features may be present in some rulesets, we cannot always

assume that to be true. In such cases, the heavily feature-

dependent solutions may yield poor memory efficiency.

With the advancements in memory technology, coping with

the memory bottleneck has become a secondary concern. How-

ever, high-speed networking is becoming critically important

with the stringent throughput demands and Quality of Service

(QoS) requirements. To achieve this, networking hardware

must be capable of delivering the required throughput and

QoS. While 100 Gbps networking is becoming standard,

both the research community and the industry are targeting

400 Gbps and even 1 Tbps networks to support future net-

working demands [1], [2].

Combining memory efficiency and high throughput in the

same solution is difficult and challenging due to many rea-

sons. For example, in the trie/tree based approaches, on-chip

resources are easily exhausted due to pipelined tree traversal

and multiple field lookup. Therefore, implementing parallel

pipelines to improve the throughput becomes infeasible. In

this work, we consider improving throughput as the primary

goal while memory efficiency is kept secondary.

We present StrideBV a simple, yet high-throughput packet

classification scheme based on field-split algorithm [8]. We

avoid depending on features of the ruleset to optimize for

memory efficiency, which makes our packet classification

engine a robust solution. Using FPGA as a hardware platform,

we demonstrate that via tight integration of logic and memory

resources available on-chip, our parallel pipelined architecture

can achieve a throughput of 400 Gbps and beyond for real-life

rulesets. Further, the classification engine can be customized

as a single 400 Gbps engine or four 100 Gbps engines for

added flexibility. While achieving high-throughput, on the

average, the proposed scheme achieves 2.5× power efficiency

compared with the state-of-the-art solutions available in the

literature. We summarize our contributions in this work as

follows:

• The first 400G+ packet classification engine solution for

real-life rulesets on a single chip

• Performance independent of ruleset features

• Detailed performance analysis wrt throughput, power and

resource usage under various configurations

• 2.5× average power efficiency compared with state-of-

the-art packet classification engines

II. BACKGROUND AND RELATED WORK

A. FPGA for High-speed Networking

FPGAs are widely used in various networking applications

such as packet forwarding, packet classification, DPI, etc [16],

[14], [2]. The most salient features of FPGA for networking

are reconfigurability, abundant parallelism, vast amount of

on-chip logic and memory resources and the enormous on-

chip memory bandwidth. These features make it an ideal

platform to implement algorithmic solutions for networking

applications. Even though the operating frequency of FPGA

is low (typically 100-400 MHz) fine-grained pipelining can

be used to dramatically improve the performance. Further,

parallel architectures can also be effectively implemented on

FPGA fabric.

B. Related Work on Packet Classification

Packet classification rulesets, or classifiers, are not made

publicly available due to security reasons. However, in [5],

the authors acquired access to real-life firewall rulesets from

a set of Internet Service Providers (ISPs) and they revealed

some statistics and common characteristics of the rulesets.

One important fact revealed by the studies on real rulesets is

the ruleset size. These rulesets are fairly small in size with

a mean of 50 rules per ruleset. Further, only 0.7% of the

rulesets contained more than 1000 rules and nearly 99% of

the classifiers contained less than 500 rules. Even though the

largest ruleset is targeted in most of the solutions proposed in

the literature, according to the studies on real-life classifiers,

the average number of rules is far less compared with the

upper bound.

Solutions for packet classification can be categorized into

two main groups: 1) Decomposition based and 2) Decision

Tree based. Decomposition based approaches are two phased.

In the first phase, individual field search is performed sepa-

rately to produce partial search results and in the second phase

the partial results are combined using an aggregation network.

Various solution techniques based on Ternary Content Ad-

dressable Memory (TCAM), bit vector, tree/trie traversal and

hashing are present in the literature [7], [17], [14], [4].

Decision tree based approaches are radically different in

that, the ruleset is mapped to a multi-dimensional space

where each dimension represents a header field used in the

classifier [6], [12]. Each rule forms a hypercube in the multi-

dimensional space which represents the volume covered by

that rule. Due to rule overlap, the hypercubes formed by

the rules intersect with each other. A packet header becomes

a point in this space and the challenge is to identify the

hypercube with the highest priority, this point belongs to. A

decision tree partitions the multi-dimensional space so that

the search can be performed effectively guided by the packet

header.

As mentioned in Section I, all the above solutions rely on

the features of the classifier and the main goal is improv-

ing memory efficiency. The memory efficiency ranges from

10 ∼ 80 bytes/rule and the best throughput observed in these

solutions is 100 Gbps [8]. Our goal is to avoid relying on the

features of the ruleset and provide a high-throughput solution

for packet classification.

III. STRIDEBV: ALGORITHM AND CLASSIFICATION

PROCESS

A. Problem Definition

Packet classification is a generic scheme in which an

arbitrary number of header fields of a packet can be inspected

for the classification purpose. The most widely used scheme

is 5-field packet classification in which the following tuple of

headers of each incoming packet is inspected: 〈Source IP (SA),

Destination IP (DA), Source Port (SP), Destination Port (DP),

Protocol (PR) 〉. The type of lookup required for each field can

be different. In 5-field classification, the two IP address fields

require prefix match, the two port fields and protocol field

require either range or exact match. With this understanding,

we formally define our problem as follows:

Given a packet classification ruleset that has N number

of rules that considers d number of packet header fields,

f0, f1, ..., fd−1, devise:

• A lookup scheme whose performance is independent of

the features or properties of ruleset

• A hardware architecture to perform wire-speed packet

classification for 400 Gbps and beyond

B. Field-split Algorithm

The field-split algorithm, in a networking context, was orig-

inally studied in Field-Split Bit Vector (FSBV) [8]. In FSBV,

the primary goal is reducing memory consumption. Their

studies on the 5-field packet classification rules appearing in

the Snort [13] ruleset show that the SA, DA and PR fields

of the rules contain a very small number of unique values

compared with the ruleset size. For example, the SA field has

11 unique values in a ruleset of size 323. This provided them

the opportunity to use TCAM/CAM for those fields that satisfy

the condition 2× wi > ui, where wi is the bit-width of field

fi and ui is the number of unique values in field fi found

within the classifier. The intuition behind this condition is the

comparison against the bit vector based approach [14], whose

memory requirement may increase in the order of O(ui ×N)
for field fi. Since reducing the memory requirement was the

main goal in FSBV, the authors applied the field-splitting

algorithm only to the SP and DP fields, which satisfied the

aforementioned condition.

The field-split algorithm is as follows: In a rule Rk, for a

given field fi that has a bit width of wi, it can be partitioned

into a set of wi sub-fields (fi[wi]), where each sub-field

corresponds to a single bit position in field fi. This limits

the number of values each sub-field can take to 2, which are

[0, 1]. Extending this to all the rules in the classifier yields

two N bit vector that corresponds to the two possibilities of

the sub-field fi[wi], which are fi[wi] = 0 and fi[wi] = 1. To

better understand this process, we use an example ruleset as

shown in Figure 1. Here we consider a hypothetical header

field of bit width 4.

Rule Field fi

R1

R2

R3

R4

1001

101*

0100

1*10

R1 R2 R3 R4

0

1

0

1

0

1

0

1

fi[3]=

fi[2]=

fi[1]=

fi[0]=

Incoming packet

fi = 1011

fi[3]=1

M
u
l
t
i
-
m
a
t
c
h

r
e
s
u
l
t

FSBV

0 0 0

0

0

0 0

0 0

00

0

0 0

1 1

1

1

1

11

11

1

1

1

1

111

11

01 1 1

0 111

00 1 1

0 011

fi[2]=0

fi[1]=1

fi[0]=1

Fig. 1. Field-split bit vector generation and classification operation

In Figure 1, the bit vector generation process as well as

packet lookup process is illustrated. The individual sub-fields

form two vectors of size N . When a packet header arrives

requesting classification, the corresponding bit vectors are

loaded and a bit-wise logical AND operation is performed

to identify the matching result. A bit vector in the context

of packet classification is an N bit vector of which, each

bit is representing a rule of the classifier. A bit position set

to 1 indicates a match, while a 0 indicates otherwise. The

correctness of this scheme is proved in [8]. The result of the

AND operation is another bit-vector of size N , in which, each

bit position k indicates whether or not there was a match with

rule Rk for the incoming packet header.

Note that field-split has full support for wildcard (*) match-

ing by setting the corresponding bit vector positions to 1. In

rules R2 and R4, wildcards appear at bit positions 0 and 2,

respectively. A wildcard indicates that the corresponding bit

in the header could be either 0 or 1. The importance of the

wildcard character is prefixes can be easily expressed and

implemented. Hence, prefix and exact matching is directly

supported in the field-split algorithm.

However, expressing ranges in binary format requires range

to prefix conversion [10]. This conversion results in partition-

ing a single rule into multiple rules, until the rule with the

range can be expressed as a prefix. An alternative to this

is to compare the field value with the explicit bounds. For

example, for a range [x, y], the comparison x < fi < y
can be performed to test whether the packet header belongs

to the given range or not. This requires additional hardware

(comparators) and slight modification of the search algorithm.

However, as shown in [5], range specifiers are seldom used

(at most 10%, only in SP and DP fields). Hence, for our

experiments, we assume that a rule can be expressed as a

ternary string given by the following regular expression: [0

1 *]{wi}, for a field with wi bits.

C. StrideBV: Algorithm

As mentioned earlier, in [8], the field split algorithm is

applied only for the SP and DP fields due to the concern

on memory consumption. For the other fields TCAM/CAM is

used since the number of unique values is small. Our goal is

to devise a solution that avoids relying on such ruleset features

and achieves high throughput. Implementing TCAM on FPGA

can become inefficient due to high circuit complexity and

poor performance compared with pipelined architectures [14].

TABLE I
COMPARISON OF VARIATIONS TO STRIDEBV

Method Memory size Total memory bandwidth # stages

1 (2k/k)×N ×W N ×W/k W/k

2 N ×W N ×W W/k

This limits the scalability as well as performance of FSBV

as ruleset features change. We consider memory consumption

as a secondary concern mainly because of the ability of

the proposed solution to exploit various memory resources

available on FPGA. Hence, in this work, we apply field-split

algorithm to all the 5 fields.

The challenge in doing the above is the pipeline length.

The resulting pipeline length becomes W =
∑

d

i=0
wi. In

the case of 5-field packet classification, this amounts to 104
pipeline stages. From a network perspective, this causes packet

latency to increase by a significant factor. From a hardware

perspective, particularly on FPGA, this necessitates significant

amount of routing which causing the performance to degrade.

Reducing pipeline length in this approach can be done using

multiple bits (k bit stride) than a single-bit inspection. This

can be performed in two different methods by storing:

1) Bit vectors corresponding to the 2k combinations of the

k bit stride and load a single bit vector per stage

2) 2× k bit vectors corresponding to the individual bits of

the k bit stride and load multiple bit vectors per stage

Table I compares the characteristics of the two approaches.

The first method consumes more memory while reducing

memory bandwidth and second method saves memory at the

cost of memory bandwidth. However, it should be noted that

in the second case, in a single stage, k number of N bit AND
operations need to be performed. This increases the amount

of work to be done per stage which causes the clock period

to increase. Since our goal is to implement a high-throughput

packet classification engine, we opt for the first method at

the cost of increasing the memory consumption. Considering

the stride memory access and use of bit-vector to perform

classificaiton, we call the proposed scheme StrideBV.

D. Multi-match to Single-match

In [8], [14], the output of the lookup engine is the bit-vector

that indicates the matching rules for the input packet header.

This is desirable in environments such as Intrusion Detection

Systems (IDSs) where reporting all the matches is necessary

for further processing. However, in packet classification, only

H
D
R
[
0
:
W
-
1
]

BVP[0:N-1]

BVM[0:N-1]

BVR[0:N-1]

Stage (0) Memory

B
V
P
[
0
:
N
-
1
]

H
D
R
[
0
:
W
-
1
]

B
V
P
[
0
:
N
-
1
]

HDR[0:W-1]

Stride

H
D
R
[
0
:
W
-
1
]

BVP[0:N-1]

BVM[0:N-1]

BVR[0:N-1]

Stage (W/k-1) Memory

B
V
P
[
0
:
N
-
1
]

B
V
R
[
0
:
N
-
1
]

Stride

.

Pipelined Priority

Encoder (PPE)

log N stages

H
i
g
h
e
s
t

p
r
i
o
r
i
t
y

m
a
t
c
h

P
a
c
k
e
t

c
l
a
s
s
i
f
i
c
a
t
i
o
n

r
e
q
u
e
s
t

Fig. 2. StrideBV pipelined architecture (BVP/BVM/BVR - Previous/Memory/Resultant Bit-Vectors, HDR - 5-field header, Stride - k bit header stride)

the highest priority match is reported since routing is the main

concern.

The rules of a classifier is sorted in the order of decreasing

priority. Hence, extracting the highest priority match from

the N bit-vector translates to identifying the first bit position

which is set to 1, when traversing the bit-vector from index

0 → N − 1. This task can be easily realized using a priority

encoder. The straightforward priority encoder produces the

result in a single cycle. However, when the length of the bit-

vector increases, the time required to report the highest priority

match increases significantly. This causes the whole pipeline

to run at a very slow clock rate which degrades the throughput.

As a remedy, we introduce a Pipelined Priority Encoder

(PPE). A PPE for a N bit-vector consists of logN number

of stages and since the work done per stage is trivial, the

PPE is able to operate at very high frequencies. Hence, the

performance bottleneck introduced by the single stage priority

encoder can be effectively eliminated using a PPE.

E. StrideBV: Lookup Process and Hardware Architecture

StrideBV lookup process is fairly simple. At each stage s of

the pipeline, the stride [sk : (s+1)k−1] is used as the address

to the stage memory. The output of the stage memory is the

N bit-vector corresponding to the input stride. This bit-vector

is ANDed with the bit-vector from the preceding stage to

produce the intermediate result. This process is implemented

as a linear Static Random Access Memory (SRAM) based

pipeline. The output of the initial pipeline is the multi-

match result. In order to extract the highest-priority match,

the StrideBV pipeline is followed by a PPE. The overall

architecture of the proposed solution is depicted in Figure 2.

IV. PERFORMANCE ANALYSIS ON FPGA

In this section, we provide a detailed analysis of the

StrideBV architecture under different configurations. The per-

formance of the proposed architecture is measured in through-

put, memory efficiency, power and resource usage. A state-of-

the-art Xilinx Virtex-6 device (XC6VLX760) [15] was used

for the experiments and the results presented here are based on

the post place-and-route performance. The considered device

has 118K logic slices which can be used either as pure logic

or distributed RAM (8 Mbit max), 26 Mbit of block RAM and

a total of 1200 Input/Output (I/O) pins. Since StrideBV does

not rely on ruleset features, to evaluate the performance, we

used ruleset sizes ranging from 32 to 512 rules, considering

real-life firewall classifiers [5].

A. Throughput

The main goal of this work is to implement a high-

throughput packet classification engine. For this, the archi-

tecture depicted in Figure 2 was mapped on to the FPGA

fabric. In doing so, there were two options: Use 1) distributed

RAM or 2) block RAM as stage memory. Here the trade-

off is memory size vs. clock period. Since distributed RAM

is implemented using logic slices, the wire length between

logic and stage memory can be dramatically reduced which

in turn reduces the clock period. In the case of block RAM,

the increased wire length between memory and logic increases

the routing delay which affects the throughput in a negative

manner. Hence, we opted to use distributed RAM since the

memory requirement for real-life classifiers in our application

is less than the maximum distributed RAM available on the

considered FPGA.

A single pipeline was not adequate to support 400 Gbps (this

requires an operating frequency of 1.25 GHz, which current

FPGA device do not support [15]). For this, we employed

4 pipelines for ruleset sizes less than 512 and 6 pipelines for

ruleset size 512. With increasing ruleset size, the routing com-

plexity of the design becomes significantly high, causing the

clock frequency to decrease. Hence, multiple lookup engines

were required to sustain 400 Gbps throughput. The dual-port

feature of distributed RAM was used to efficiently share stage

memory between two pipelines. This allows us to parallelize

the architecture by sharing resources. Figure 3 shows the

throughput variation with the size of the classifier for various

stride sizes for minimum packet size (40 Bytes). It can be

observed that the proposed scheme sustains 400G+ throughput

for all considered classifier sizes. For lower stride size and

large classifiers, mainly due to the increase of complexity in

routing, a decrease in performance can be observed.

It can be seen that on the average, using a larger stride

size is desirable from a throughput point of view. Further, this

reduces pipeline length which in turn reduces packet delay.

However, this comes at the cost of using extra memory. In

the following section, we show the memory efficiency of this

approach for varying stride size.

B. Memory Efficiency

Memory efficiency is not considered a major concern in this

work. However, we show that the proposed architecture can

be easily fitted on a single-chip while achieving 400 Gbps

or beyond. Further, we employed only the distributed RAM

� ��� ��� ��� ��� ��� ���

��������	���
��

���

���

���

���

���

���

�

��
�
�

�
�
��
��
�
�
��

�	
�����

�	
�����

�	
�����

�	
�����

�	
�����

Fig. 3. Throughput vs. number of rules

(built using logic) in this work. Additional parallel pipelines

can be implemented by utilizing the 3× more block RAM

available on-chip. Figure 4 illustrates the per pipeline memory

efficiency. Since we use dual-ported stage memory, to imple-

ment 4 and 6 parallel pipelines, to calculate the total memory

consumption, multiplication factors of 2× and 3× has to be

introduced, respectively.

The worst case in memory efficiency is when stride size is 5
and N = 512. Even in this scenario, the memory consumption

per pipeline is < 700 Kbit. Hence, even if we require 3× more

memory, the architecture can still be accommodated on-chip

using only the distributed RAM. This allows instantiation of

multiple parallel pipelines to achieve high-throughput.

� � � � �

���������	�

�

���

���

���

���

���

���

���

�
�
�
�
��
�
�
�
��
�
�
�
�
��
��
�
��
� 	
�
��

	
�
��

	
�
���

	
�
���

	
�
���

Fig. 4. Memory vs. stride size

C. Power Per Unit Throughput

The proposed StrideBV architecture is entirely logic based,

however, it can be extended to a hybrid of memory (BRAM)

and logic. To measure power consumption of our device,

we used the XPower Analyzer tool available in the Xilinx

ISE 12.4 suite. The metric used to measure power efficiency

of networking devices is Watts per Gbps (W/Gbps) [3]. We

evaluate our architecture using this metric and the results are

shown in Figure 5. Here, we report the power consumed by

logic and distributed RAM.

The key observation is that, using a small stride size yields

lower power efficiency. This is mainly because of the extensive

resource usage. As shown in Table I, using a stride of size

k results in a pipeline of length W/k. In our application,

using a stride size of 1 renders a pipeline of length 104. This

increases the resource consumption which dictates the power

consumption. From a power efficiency point of view, using a

larger stride size is desirable.

Further, we observed that increasing k does not continually

improve the power efficiency. When larger stride sizes are

used, the per stage memory requirement increases by a factor

of 2k/k while the amount of logic decreases by a factor of

1/k. Initially, the impact of memory power is less and logic

power dominates. However, as k increases, memory power

dominates the total power consumption, hence causes the total

power to increase than decrease. For example, for N = 512,

we observed k = 5 to be the minimum (i.e. the best) k value

for power efficiency.

� � � � �

���������	�

�

����

����

����

����

����

����

����

�
�
�
��

�
��
��
��
�
�
�

�
��
��
�
��
�

��

	
�
��

	
�
��

	
�
���

	
�
���

	
�
���

Fig. 5. Power per unit throughput vs. stride size

D. Resource Consumption

As mentioned in the previous section, the proposed architec-

ture is logic oriented. On FPGA, the unit of logic resource is

a slice. We observed the resource consumption based on the

percentage of slices utilized. Figure 6 illustrates the results.

Comparing Figure 5 and Figure 6, one can observe similar

variation in the two figures. This is because our architecture

is purely logic based and the reported power is based on logic

power consumption.

In the case of k = 1 and N = 512, almost all the logic

resources available on the considered FPGA is consumed. In

such a scenario, two approaches can be taken to alleviate the

resource limitation: 1) Use a larger stride size or 2) Exploit

block RAM. A practical option would be to use a larger stride

size considering all other performance metrics.

� � � � �

���������	�

�

��

��

��

��

���

�
��
�
�
�
��
��
�
�
��
�
��
��
�
�� 	
�
��

	
�
��

	
�
���

	
�
���

	
�
���

Fig. 6. Resource (logic) usage vs. stride size

E. Comparison with Existing Approaches

We compare the worst case performance of several existing

solutions to illustrate the benefits of StrideBV. Table II sum-

marizes this comparison. For this evaluation, we considered a

5-field classification ruleset with 512 rules for all the schemes.

For [14], [8] and [17], we scaled the performance to the state-

of-the-art technology considering a 18 Mbit TCAM running

at 250 MHz consuming 35 W [9]. General observation is that

TABLE II
PERFORMANCE COMPARISON

Approach Memory req. Throughput Power efficiency

TCAM-SSA [17] 13 Bytes/rule 20 Gbps 5150 µW/Gbps

BV-TCAM [14] 82.9 Bytes/rule 80 Gbps 2350 µW/Gbps

FSBV [8] 29 Bytes/rule 100 Gbps 1710 µW/Gbps

StrideBV (k = 3) 104 Bytes/rule 393 Gbps 1480 µW/Gbps

StrideBV (k = 4) 156 Bytes/rule 407 Gbps 1223 µW/Gbps

even though the TCAM only approach (TCAM-SSA) achieves

high memory efficiency, the power consumption is signifi-

cantly high compared with the SRAM based architectures (BV-

TCAM, FSBV, StrideBV).

The memory efficiency of StrideBV is the lowest in Ta-

ble II due to the parallel pipelined implementation. Note

that the other schemes will have worse memory efficiencies

when instantiated parallely, to achieve 400 Gbps. Further,

StrideBV’s memory efficiency can be improved by using

small stride size. For example, strides of 1, 2, 3, 4 and 5 will

have memory efficiencies of 26, 26, 34.7, 52 and 83.2 bytes

per rule, respectively, per pipeline. This memory efficiency

will come at the cost of increased pipeline length and lower

power efficiency. While memory efficiency can be adjusted

depending on the requirement, the aforementioned memory

efficiencies are guaranteed for a given ruleset. This clearly

distinguishes StrideBV from other approaches. For example,

the BV-TCAM approach can potentially require O(N) TCAM

and FSBV may require O(wi) TCAM and O(wi×N) SRAM

storage per field. On the other hand, the storage requirement

of StrideBV bounded by Θ(N ×W × 2k/k).

Nevertheless, the throughput and power efficiency achieved

by StrideBV is unmatched by existing solutions and its salient

characteristic of being independent of ruleset features makes

it a unique packet classification solution.

V. CONCLUSION AND FUTURE WORK

We presented StrideBV, a packet classification solution that

does not depend on the ruleset features and operates at 400G+

throughput levels. To the best of our knowledge, this is the first

400G+ packet classification solution available on a single chip.

While achieving high throughput, the proposed solution is, on

the average, 2.5× power efficient compared with state-of-the-

art solutions. We extended an algorithm proposed earlier as

Field-Split Bit-Vector (FSBV) to the complete packet header

to achieve these performance improvements. In StrideBV, we

introduce stride access instead of bit-by-bit inspection of the

header to reduce pipeline length of the proposed architecture.

The performance evaluated on Field Programmable Gate

Array (FPGA) shows that using larger stride sizes yield

better performance while consuming more memory. However,

considering the abundant resources available on state-of-the-

art FPGA, memory consumption does not become a major

concern. We demonstrate this by implementing 4 and 6 parallel

pipelines on a single chip. Performance of the proposed

architecture is stable for large stride sizes, guaranteeing 400G+

throughput for real-life rulesets.

Note that as the ruleset size increases, the throughput

decreases gradually. In such cases, the proposed architecture

can be parallelized at fine grained levels to sustain high-

performance. Further, ruleset partitioning to alleviate signal

routing issues (to improve performance) on FPGA is also

possible. For the proposed architecture, it is assumed that a

rule can be represented as a ternary string. Hence, in order to

support range search, range-to-prefix conversion has to take

place. As future work, we intend to include range search

capabilities in StrideBV and explore the potential of this

scheme to be implemented as a fully parallelized architecture.

REFERENCES

[1] Alcatel-Lucent. Alcatel-lucent fp3 400g network processor. http://www.
alcatel-lucent.com/fp3/.

[2] M. Attig and G. Brebner. 400 gb/s programmable packet parsing on a
single fpga. In Proc. 7th ACM/IEEE Symposium on Architectures for

Networking and Communications Systems, pages 12–22, oct. 2011.
[3] Cisco. Evaluating and enhancing green practices with cisco catalyst

switching. http://www.cisco.com.
[4] M. Faezipour and M. Nourani. Wire-speed tcam-based architectures

for multimatch packet classification. Computers, IEEE Transactions on,
58(1):5 –17, jan. 2009.

[5] P. Gupta and N. McKeown. Packet classification on multiple fields.
In Proceedings of the conference on Applications, technologies, archi-

tectures, and protocols for computer communication, SIGCOMM ’99,
pages 147–160, New York, NY, USA, 1999. ACM.

[6] P. Gupta and N. McKeown. Classifying packets with hierarchical
intelligent cuttings. Micro, IEEE, 20(1):34 –41, jan/feb 2000.

[7] G. Jedhe, A. Ramamoorthy, and K. Varghese. A scalable high throughput
firewall in fpga. In Field-Programmable Custom Computing Machines,

2008. FCCM ’08. 16th International Symposium on, pages 43 –52, april
2008.

[8] W. Jiang and V. K. Prasanna. Field-split parallel architecture for
high performance multi-match packet classification using fpgas. In
Proceedings of the twenty-first annual symposium on Parallelism in

algorithms and architectures, SPAA ’09, pages 188–196, New York,
NY, USA, 2009. ACM.

[9] D. Perino and M. Varvello. A reality check for content centric
networking. In Proceedings of the ACM SIGCOMM workshop on

Information-centric networking, ICN ’11, pages 44–49, New York, NY,
USA, 2011. ACM.

[10] T. Sasao. On the complexity of classification functions. In Multiple

Valued Logic, 2008. ISMVL 2008. 38th International Symposium on,
pages 57 –63, may 2008.

[11] K. Scarfone and P. Mell. Guide to intrusion detection and prevention
systems (idps). Recommendations of the National Institute of Standards
and Technology Special Publication 800-94.

[12] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet classification
using multidimensional cutting. In Proceedings of the 2003 conference

on Applications, technologies, architectures, and protocols for computer

communications, SIGCOMM ’03, pages 213–224, New York, NY, USA,
2003. ACM.

[13] Snort. Snort: Network intrusion prevention and detection system
(ips/ids). http://www.snort.org/.

[14] H. Song and J. W. Lockwood. Efficient packet classification for
network intrusion detection using fpga. In Proceedings of the 2005

ACM/SIGDA 13th international symposium on Field-programmable gate

arrays, FPGA ’05, pages 238–245, New York, NY, USA, 2005. ACM.
[15] Xilinx. Virtex-6 lxt fpgas. http://www.xilinx.com/products/

silicon-devices/fpga/virtex-6/lxt.htm.
[16] Xilinx. Xilinx xcell journal. http://www.xilinx.com/publications/

xcellonline/.
[17] F. Yu, T. Lakshman, M. Motoyama, and R. Katz. Ssa. In Architecture for

networking and communications systems, 2005. ANCS 2005. Symposium

on, pages 105 –113, oct. 2005.

