
1

Automation Framework for Large-Scale Regular
Expression Matching on FPGA*

Thilan Ganegedara, Yi-Hua E. Yang, Viktor K. Prasanna

Dept. of Electrical Engineering, University of Southern California

{ganegeda,yeyang,prasanna}@usc.edu

Abstract—We present an extensible automation framework
for constructing and optimizing large-scale regular expression
matching (REM) circuits on FPGA. Paralleling the technique
used by software compilers, we divide our framework into
two parts: a frontend that parses each PCRE-formatted regu-
lar expression (regex) into a modular non-deterministic finite
automaton (RE-NFA), followed by a backend that generates
the REM circuit design for a multi-pipeline architecture. With
such organization, various pattern and circuit level optimizations
can be applied to the frontend and backend, respectively. The
multi-pipeline architecture utilizes both logic slices and on-chip
BRAM for optimized character matching; in addition, it can
be configured at compile-time to produce concurrent matching
outputs from multiple RE-NFAs. Our framework prototype
handles up to 64k "regular" regexes with arbitrary complexity
and number of states, limited only by the hardware resources of
the target device. Running on a commodity 2.3 GHz PC (AMD
Opteron 1356), it takes less than a minute for the framework
to convert ~1800 regexes used by the Snort IDS into RTL-
level designs with optimized logic and memory usage. Such an
automation framework could be invaluable to REM systems to
update regex definitions with minimal human intervention.

Index Terms—Regular expression, FPGA, finite state machine,
non-deterministic finite automata, NFA, pattern-level optimiza-
tion, circuit-level optimization

I. INTRODUCTION

Regular expression matching (REM) has traditionally

played a key role in text processing and database filtering.

More recently, it has become an essential component in

the network intrusion detection systems (NIDS) to perform

deep packet inspection (DPI). In particular, Perl-Compatible

Regular Expression (PCRE) has become a de facto REM

software library used by many NIDS such as Snort [3] and

Bro IDS[1]. For convenience, we call a regular expression

written in the PCRE format a regex.

In practice, “regular” regexes (which define regular lan-

guages)1 can be matched using either nondeterministic (NFA)

or deterministic (DFA) finite automata. The NFA approach

[6, 9, 11, 12, 14, 16] is ideal for hardware acceleration using

field-programmable gate arrays (FPGA), where a set of regexes

are compiled into parallel circuits. Every character position in

the regex corresponds to an NFA state, which is set “active”

when the character position is reached by the input stream.

Numerous optimizations such as input/output pipelining [9],

* Supported by U.S. National Science Foundation under grant CCR-
0702784.

1Some PCRE features such as backreference and recursion are not regular.
They are not the focus of this work.

common-prefix extraction [6, 9], multi-character input [14,

16], and centralized character decode [6, 10], can be applied

to improve throughput and to reduce resource requirements of

the resulting REM circuits.

While various techniques can be used to optimize a partic-

ular REM solution, a more daunting challenge is to quickly

generate and optimize any large-scale REM solution upon

regex updates. Such updates can be due to changes in the set

of attack signatures used by the NIDS, for example. State-of-

the-art designs for hardware-accelerated REM usually require

sophisticated optimization procedures that are often tailored to

the particular set of regexes. This makes the REM circuit con-

struction and optimization a time and labor consuming task.

In contrast, the set of regexes such as NIDS signatures can be

updated weekly or even daily. Hence, an automation process

to streamline the construction and speedup the optimization of

large-scale REM solutions is critically needed.

In this paper, we propose an automation framework which,

given a set of regexes, automatically constructs a large-scale

REM circuit on FPGA. Improving upon the software toolchain

in [16], our framework automates both the parsing of PCRE-

formatted regexes (in the frontend) and the generation of RTL-

level circuit designs (in the backend). Based on a modular RE-

NFA architecture, the framework can also be extended with

custom optimization plug-ins to further minimize resource

usage and/or improve throughput performance. Specifically,

following are our contributions in this paper:

1) We design an extensible automation framework for

converting “regular” PCRE regexes into optimized REM

circuits in VHDL.

2) We implement an efficient top-down algorithm to parse

regexes into a modular RE-NFA architecture.

3) We propose a number of pattern-level and circuit-level
optimizations to reduce resource requirements and to

improve memory and throughput performance of the

resulting REM solution.

4) Our multi-pipeline architecture exploits shared char-

acter matching between different regexes and allows a

configurable number of concurrent matching outputs.

The rest of this paper is organized as follows. Section II gives

the background and related work, while Section III gives an

overview of the framework. Section IV and V describe the

frontend and backend designs, respectively. Section VI shows

performance evaluations. Section VII concludes the paper and

discusses future work.

2

Figure 1. Overview of the frontend (left) and backend (right) processing flows of the proposed framework. The inner shaded squares are plug-ins which
define either a parsing/mapping or an optimization function..

II. BACKGROUND AND RELATED WORK

A. Regular Expression Matching

Any regular expression, by definition, describes a regular

language over a fixed alphabet. There are three basic operators

which provide the facility to combine individual characters to

form arbitrary regular expression patterns: concatenation (·),
union (|) and Kleene closure (∗). Additionally, most REM

software (including PCRE) also support several derivative

operators, such as optionality (?) and constrained repetition
({a, b}), as well as the pre-defined and custom character

classes (see Table I). A regular expression in such a derivative

syntax is usually referred to as a regex.

Regular expression matching (REM) has been traditionally

implemented as software libraries (e.g. [2]). Software based

REM matches the input stream against each regex by sequen-

tially searching for the matching condition in a depth-first

manner. If a search path (following certain choices at various

union or closure operators) fails to produce a valid match, the

search is backtracked and started over. Such sequential search

and backtracking make software based REM a performance

bottleneck in high throughput systems [13]. .

B. NFA-based REM on FPGAs

Hardware based REM implementation was first studied

by Floyd and Ullman [8], where an n-character regex is

first converted to an n-state nondeterministic finite automaton

(NFA), then mapped to an integrated circuit using no more

than O (n) circuit area. Sidhu and Prasanna [12] later proposed

an algorithm to construct REM circuits on FPGA in a similar

NFA architecture, which was also used by most other hardware

based REM designs ([6, 9, 11, 14]). Yang and Prasanna [16]

adopted a different approach to first translate an arbitrarily

structured regular expression of length n to a modular RE-

NFA with n modules, then map the RE-NFA to a uniformly

structured circuit.

Automatic REM circuit construction on FPGAs was first

proposed in [9] using JHDL for both regular expression pars-

ing and circuit generation. In particular, the (J)HDL construc-

tion approach used in [9] is in contrast to the self-configuration
approach done by [12]. Large-scale REM circuit was also

considered in [9], where the character input is broadcasted

globally to all states in a tree-structured pipeline. In [6],

the regular expression was first tokenized and parsed into a

hierarchy of basic NFA blocks, then translated into VHDL

using a bottom-up scheme. In [11], a set of scripts were used to

compile regular expressions into opcodes, to convert opcodes

into NFA, and to construct the NFA circuits in VHDL.

A multi-character decoder was proposed in [7] to improve

pattern matching throughput. While the technique was claimed

to be applicable to REM, only the construction of a fixed-string

matching circuit was presented. An algorithm that extends

any single-character matching REME temporally into a multi-

character matching REME was proposed in [14]. In contrast,

the modular RE-NFA architecture in [16] allows its circuit

to be stacked spatially and automatically to process multiple

characters per clock cycle.

Although hardware based REM solutions usually outper-

form software based ones in terms of matching throughput,

it is in practice much harder to change the design of a

hardware circuit than to update the set of regexes matched by a

software program. The problem is aggravated by the numerous

sophisticated optimizations applied to the REM hardware

designs. Thus an automation framework for constructing and

optimizing hardware-accelerated REM is highly needed.

III. FRAMEWORK OVERVIEW

The primary design goal of the framework is to automate the

construction and optimization of large-scale regular expression

matching (REM) circuits on FPGA in a configurable and

extensible manner. In addition, the framework shall allow

various optimizations to be applied effectively and generate

high-performance circuits that scale well to large numbers of

regular expressions (regexes).

In order to achieve these goals, we follow the example

of modern software compiler design to divide the framework

into a frontend, which handles regex parsing and pattern-level

processing, and a backend, which constructs the multi-pipeline

architecture for REM and performs circuit-level optimizations.

Central to this two-phase processing is the modular RE-

NFA architecture with which the regexes are represented and

manipulated internally by the framework. Figure 1 gives a

comprehensive overview of the framework.

The frontend accepts a (potentially large) set of unordered,

PCRE formatted “regular” regexes and parse them into a

collection of intermediate RE-NFAs, one for each input regex.

All the operators listed in Table I are supported by the parsing.

The intermediate RE-NFAs are then optimized by the frontend

3

Table I
PCRE OPERATORS SUPPORTED BY OUR SOFTWARE

Op. Name Example Description

- Concatenation q1q2 q2 right after q1

| Union q1|q2 Either q1 or q2

* Kleene closure q∗ q zero or more times

+ Repetition q+ q one or more times

? Optionality q? q zero or one times

{m, n} Constrained rep. q {m,n} q in m to n times

[...] Character class [a− c] Either a, b or c

[^...] Inv. char. class [ˆ\r\n] Neither \r nor \n

with pattern-level manipulations such as the categorization of

RE-NFAs by character class complexity and the grouping of

RE-NFAs based on common prefix/character properties. The

frontend is also extensible by custom optimization plug-ins as

long as the outputs of these plug-ins respect the intermediate

RE-NFA representation.

Once the frontend processing is complete, the ordered

groups of RE-NFAs are presented to the backend where they

are further optimized at the circuit level and mapped to

the multi-pipeline architecture on FPGA. The multi-pipeline

architecture is capable of matching an input stream of charac-

ters against the entire set of regexes and outputting multiple

matching results per clock cycle, one per each pipeline.

Similar to frontend, the backend can also be extended with

custom optimization plug-ins before the optimized RE-NFAs

are converted to RTL-level circuit designs in VHDL.

IV. FRONTEND PROCESSING

The frontend is described in two parts: (1) Parsing regex to

RE-NFA, and (2) Pattern-level categorization and grouping.

A. Parsing Regex to RE-NFA

To generate the RE-NFA for a given regex, we first ex-

tend the modified McNaughton-Yamada (MMY) constructions

described in [16] to support the additional PCRE operators

in Table I. Then we improve the speed performance of the

original MMY algorithm by converting regexes to modular

RE-NFAs in a tokenized manner.

1) Adding support for additional PCRE operators: In addi-

tion to the basic concatenation, union, and Kleene closure, the

frontend supports three additional (PCRE) operators: option-
ality (?), repetition (+) and constrained repetition ({m,n}).

Figure 2 illustrates the extended MMY constructions for

converting these six operators into modular RE-NFAs. As

shown in the figure, both optionality (?) and repetition (+)

are special cases of Kleene closure where the feedback and

feedforward transitions, respectively, are omitted Depending

on whether m and n are equal to each other or to zero

and infinity, respectively, there may be several versions of

constructions for the constrained repetition {m,n}. Here we

show the general case where we first replicate the repeated

sub-regex n times in a chain of sequential transitions, then

connect the output from the last n− m+ 1 copies of the sub-

regex to the following sub-regex with ε-transitions.

Basic modified McNaughton-Yamada Constructions

p

p q

q
p

p | q

q

p

p* q

q

Extended modified McNaughton-Yamada Constructions

m-2
copies

p

p? q

q p

p+ q

q

p

p{m,n} q

qp p pn-m-2
copies

Figure 2. Graphical representation of the basic (upper) and extended (lower,
supporting ?, + and {m,n}) MMY constructions. Each oval represents the
a sub-NFA; each dashed line represents an ε-transition connecting the output
of one sub-NFA to the input of another.

hacker[0-9]*

\s*tcp udp

-

|

+

h
a

c

k
e

r

[0-9]

hacker[0-9]

Figure 3. Parsing the regex to RE-NFA: partitioning the regex into sub-regex
tokens (left) versus parsing a single sub-regex token recursively (right).

Recursively, the extended MMY constructions parse the

regex until each “oval” in Figure 2 contains only a single

character matching. This results in a modular RE-NFA archi-

tecture where each oval in the figure can be mapped to a state

module in hardware. In addition, the RE-NFA architecture

allows character matching (labeled transitions inside the ovals)

to be separated from state transitions (ε-transitions between

ovals), which is critical for mapping to the multi-pipeline

architecture in the backend processing (Section V).

2) Tokenized regexes parsing: The original MMY construc-

tion algorithm in [16] is highly recursive in nature, which can

make the parsing progress inefficient for long regexes (some

regexes in Snort rules contains thousands of characters). To

speedup the parsing progress, we first partition a given regex

into sub-regex “tokens” where each token corresponds to a

portion of the regex separated from either a ’(’, ’|’ or ’)’.

To demonstrate the this concept lucidly, we consider the ex-

ample of parsing “hacker[0-9]*(\s*tcp|udp)+”. The

regex is first partitioned into three tokens, “hacker[0-9]*”,

“\s*tcp” and “udp”. Each token can further consist of any

of the operators mentioned in Table I. Then, we calculate the

entering states and exiting states for each sub-regex token, as

summarized in Table II. An entering state is a state through

which the matching progress can enter into a given sub-regex.

For example, “\s*tcp” has two entering states because of

the by-passing transition of “\s*” due to the Kleene closure

operator. Similarly, an exiting state is a state through which

a sub-regex can exit, which would be the two “p”-matching

states for the above sub-regex. Compared to the original MMY

algorithm, the tokenized approach significantly reduces the

4

Table II
ENTERING AND EXITING STATES OF EACH SUB-REGEX AND PARENTHESIS

Sub-regex (token) Entering states Exiting states

hacker[0-9]* h r , [0-9]

\s*tcp \s , t p

udp u p

(\s*tcp|udp) \s , t , u p , p

depth of recursion and allows tokens in a long regex to be

parsed in parallel.

B. Classification of RE-NFAs

We propose two classification techniques to perform pattern-

level optimization in that frontend of our framework.

1) Character class complexity: We first classify the RE-

NFAs by the complexity of the character matching operations

required by the corresponding regex. We define two types

of character classes namely, simple and complex. The simple

character classes have one or two characters grouped together

while complex type has more than two characters. For in-

stance, [\r\n] is a simple character class while [\r\n\s]
is a complex character class. The same rule applies for

the negated character classes (i.e. [^\r\n] is simple but

[^\r\n\s] is complex).

The criterion for the above categorization is educed from

the specifications of our architecture, which is discussed in

detail in Section V-B.

2) Degrees of similarity between regexes: To exploit the

benefits of the degree of similarity between regexes, we adopt

the method proposed in [5] where, after performing a pattern-

level similarity check for all pairs of regexes, a fully connected

graph is generated with regexes as nodes and their (pair-wise)

degrees of similarity as weighted edges. A graph partitioning

algorithm is then performed to group the similar regexes

(or more precisely, their corresponding RE-NFAs) together

to allow better resource sharing when implementing the RE-

NFAs in hardware.

V. BACKEND PROCESSING

Structurally, the multi-pipeline architecture is a two-

dimensional array of stages, where each stage consists of

1 to 16 RE-NFA circuits with prioritized matching results.

Functionally, the multi-pipeline architecture improves upon the

staged pipelining in [16] by offering more flexible matching

and optimization capabilities, while preserving the correctness

of our previous design:

1) Allow multiple regex matching outputs per clock cycle.

2) Minimize utilization of on-chip block RAM (BRAM).

3) Optimize character matching and state update circuits.

A. Multi-Pipeline Architecture

As shown in Figure 4, the multi-pipeline architecture is

parametrized by two values: the number of pipelines (p) and

the number of stages per pipeline (k). While all (p + 1)
pipelines share the same character input, each pipeline has its

ChCls(1)

CC[n..0]

Stage(1,1)

O
E
(1,1)

Stage(1,k)

O
E(1,k)

Ch[7..0]

Pipeline(1)

Mout(1)

C
h[

7.
.0

]

ChCls(p)

Pipeline(p)

Stage(p,1)

O
E
(p,1)

Stage(p,k)

O
E(p,k)

Stage(1,2)

O
E
(1,2) Stage(p,2)

O
E
(p,2)

Mout(2) Mout(p)

ChCls(2)

Stage(2,1)

O
E
(2,1)

Stage(2,k)

O
E(2,k)

Pipeline(2)

Stage(2,2)

O
E
(2,2)

Figure 4. Multi-pipeline architecture (p+ 1 pipelines, each k + 1 stages).

own matching output and (BRAM-based) character classifier

shared by all (k + 1) stages in the pipeline.

The multi-pipeline architecture is designed with two phi-

losophy. First, all signals shall be propagated though the

entire set of RE-NFAs in a pipelined manner without long

routing paths. This can be seen from Figure 4 where both the

input characters (Ch[7..0]) and their classification results

(CC[n..0]) are routed locally between adjacent pipelines

and stages. Second, the two-dimensional structure of the multi-

pipeline architecture shall offer a flexible tradeoff between

matching capability and resource usage at compile time. This

is further explained in the following subsections where we

discuss the effects of multiple concurrent matching outputs

verses shared character classifications.

1) Multiple Concurrent Matching Outputs: A critical re-

quirement of large-scale regular expression matching (REM)

is to output multiple matching results concurrently. Suchca-

pability is needed to distinguish the matching results from

“conflicting” RE-NFAs at run time. Recall that each RE-NFA

defines a regular language over the input characters [4]. We

can then define “conflicting” RE-NFAs as follows:

Definition 1: Two RE-NFAs conflict with each other iff
the regular language defined by one RE-NFA intersects that

defined by the other RE-NFA, but neither language is a subset

(or superset) of the other.

It follows that, with a single matching output, the matching

results from two conflicting RE-NFAs cannot be distinguished

unless their intersection and difference RE-NFAs are defined

and matched instead. However, defining the intersection and

difference of two RE-NFAs is a hard problem and can signif-

icantly increase the resource requirement.2

On the other hand, with multiple matching outputs, this

problem is alleviated as long as the matching results from

conflicting RE-NFAs can be output concurrently. To take

advantage of this property, we perform a simple two-step

algorithm in the backend when partitioning the set of RE-

NFAs into multiple pipelines:

1) First we use the available I/O bandwidth to calculate the

maximum number of concurrent matching outputs, each

generated by one pipeline.

2For example, /[a-z]{16}/ and /[0-9a-f]{16}/ not only conflict
with each other, but their difference RE-NFAs are also very hard to define.

5

256xw BRAM

A
dd

re
ss

po
rt

Chin[7..0] Reg Chout[7..0]

\d

0x30

0x39

0

0

1

1

0

0x61

0x7A

0x65

[a-f]

1

10

0 0

[0-9a-f]

1

1

1

10

[a-z]

1

0

0

1

Figure 5. BRAM-based character classifier for w complex character classes.

RENFA_0 RENFA_1
CM_1CM_0

RENFA_r
CM_r

CC[n..0] Ch[7..0]

O
utE

nc(i,j)

Mout

R
eg

R
eg

Stage(i , j)

Figure 6. Stage architecture with a priority output encoder.

2) Then we assign RE-NFAs that are known to conflict with

each other to different pipelines.3

Depending on the particular solution requirement, we can have

either a “tall” multi-pipeline architecture with few pipelines

and many stages per pipeline, or a “flat” one with many

pipelines but few stages per pipeline. In either case, conflicting

RE-NFAs can output matching results concurrently and be

accurately distinguished.

2) Shared Character Classifications: Each pipeline in the

multi-pipeline architecture has a BRAM-based character clas-

sifier shared by all RE-NFAs in the pipeline. Figure 5 illus-

trates an example character classifier where character classes

\d, [a-f], [0-9a-f] and [a-z] (among a few unspec-

ified others) are matched in parallel by one BRAM access.

In general, BRAM-based character classifier is only used to

match complex character classes (see Section IV-B) which

would otherwise require much circuit logic resource to match.

Since all RE-NFA state transitions with the same (complex)

character class can share the output of a single column of

BRAM, the number of commom character classes between

various RE-NFAs can also be used as a metric for partitioning

RE-NFAs into different pipelines. Subject to the I/O con-

straint, a “flat” multi-pipeline favors more concurrent matching

outputs, while a “tall” multi-pipeline favors greater shared

character classifications. The height of the multi-pipeline can

be configurable at compile time to tradeoff resource efficiency

for multi-match capability.

B. Stage Architecture

Figure 6 shows the architecture of a stage with separate

character matching circuits (CM). Conceptually, all RE-NFAs

are separate from one another; practically, the backend can

3If the number of mutually conflicting RE-NFAs is greater than the number
of pipelines, then some conflicting RE-NFAs must be assigned to the same
pipeline and prioritized.

Reg Reg

clk clk

~C
C
in

C
C
in

(a) (b)

6-LUT
b[5..0]

6-LUT
a[5..0]

6-LUT

6-LUT
a[5..0]

6-LUT

(c) (d)

CMx1 CMx2

--- a7 a6 1 b7b61 1a7 a6

Figure 7. 6-LUT optimized circuit elements: state update modules with (a)
normal and (b) inverted character class inputs; compact logic for matching
(c) one-value and (d) two-value simple character classes.

exploit the common prefix and shared character matching

among various RE-NFAs (which are grouped together by

the frontend based on these properties) to improve resource

efficiency. All RE-NFAs in the same stage are prioritized

by the output encoder (OutEnc) to produce at most one

matching output per clock cycle. To maximize flexibility, a

stage receives two types of character inputs: (1) a set of

character classification results (CC[n..0]) propagated from

a previous stage; (2) the 8-bit input character (Ch[7..0])

generating these classification results.

While complex character classes are always matched by the

per-pipeline character classifier in BRAM, simple character

classes can be matched locally in logic as shown in Figure 7c

and 7d. Matching characters in logic significantly reduces the

utilization of on-chip BRAM, which can be used instead for

buffering or other purposes in a larger system. Matching char-

acters locally also helps reducing signal routing complexity,

which tends to be high when the number of unique character

classes is large.

We adopt the uniform circuit architecture in [16] to im-

plement the RE-NFAs. Specifically, each single character-

matching “oval” in Figure 2 is mapped to a state update

module in hardware, where the right circle inside the oval

corresponds to a 1-bit state register, the left circle corresponds

to a fan-in aggregator (an OR gate), and the labeled transi-

tion corresponds to a 1-bit character matching (classification)

input. In addition, we design two state update modules, one

accepting normal character matching (Figure 7a) and the other

accepting negated character matching (Figure 7b). This allows

the backend to instantiate only one character matching circuit

for both a character class and its negation, potentially cut the

resource usage of character matching circuits by half.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

Our framework prototype consists of a C++ program for

regex parsing and a number of Bash scripts for the pattern-

level optimizations in the frontend; it further consists of a Perl

script with various functions for generating optimized mulit-

pipeline circuits in the backend. To evaluate the framework

prototype, we use the latest Snort ruleset (Feb. 17, 2010)

obtained from [3] as our set of regexes. We use Xilinx

Integrated Software Environment (ISE) 11.1 to synthesize and

place-and-route the multi-pipeline circuit generated by the

framework. The target platform for our design is Xilinx Virtex

6

Figure 8. Execution time of the frontend (left) and backend (right) for
different sizes of rulesets. The backend construct a 4-pipeline REM circuit
matching m = 2, 4 or 8 input characters per clock cycle.

5 family XC5VLX220 with 34k logic slices and 192 × 1 kb

of BRAM. For our experiments, we have used 760 regexes

as our test set and show the scalability of our framework for

larger rule sets.

B. Regex statistics

We generate several statistics that are useful when imple-

menting the multi-pipeline architecture on our target platform.

We discuss two of them here.

Right before frontend processing, we run a duplicate check

to remove all the multiple occurrences of a certain rule. The

complete Snort ruleset consists of over 20k rules out of which,

surprisingly, the number of distinct rules are in the order of

2k. This is an enormous reduction from the logic and memory

usage point of view.

The other statistic is the complex and simple character

classes of all the regexes. There are 195 different character

classes appearing throughout the Snort ruleset and only 108 of

them are complex. In otherwords, nearly 45% of the character

classes are of simple or negated simple type. Therefore, using

the technique described in Section V-B we can have 45% usage

reduction of BRAM compared to our previous implementation.

C. Performance Scaling: Frontend and Backend

Figure 8 shows the variation of execution time with different

sizes of rulesets and Table III summarizes implementation

details for different multi-character matching settings and

compares our framework with our previous results in [15]

for 2-input character scenario (for a set of 760 REMEs). Our

framework prototype can convert thousands of regexes into cir-

cuit designs in VHDL in a few tens of seconds. The frontend,

written in C++, is roughly an order of magnitude faster than

the backend, which was written in Perl. Furthermore, we equip

the backend with the plug-in to generate spatially stack REM

circuit matching multiple characters per cycle [16]. While im-

proving the matching throughput significantly, we demonstrate

that such optimizations can be applied automatically by the

framework in only a few seconds.

VII. CONCLUSION

In this paper, we propose a framework to automate the

process of constructing and optimizing a large-scale regular

expression matching (REM) engine on FPGA. We divided

the framework into two phases, a frontend and a backend,

which provided us the opportunity to exploit the possible

Table III
FPGA RESOURCE USAGE AND CLOCK RATE FOR DIFFERENT

MULTI-CHARACTER MATCHING (M) SETTINGS FOR 760 REMES

m LUTs BRAM Clock Rate (MHz) Compilation Time (min)

2[15] 31 k 216 Kb 303.2 -

2 30 k 69 Kb 276.3 41

4 47 k 138 Kb 202.9 54

8 84 k 345 Kb 178.3 112

optimizations in each phase independently of the operations

of the other phase. The separation was made possible by our

use of the modular RE-NFA architecture to internally represent

and handle internally representing the regexes. We developed a

tokenized regex parser for the frontend phase and an optimized

multi-pipeline circuit generator for the backend phase. Both

phases are designed with the ability to be further extended by

the user with custom plug-ins.

REFERENCES

[1] Bro Intrusion Detection System. http://bro-ids.org/.
[2] Perl Compatible Regular Expression. http://www.pcre.org/.
[3] Snort network instrusion detection. http://www.snort.org.
[4] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Transla-

tion, and Compiling. Prentice-Hall, Inc., 1972.
[5] Zachary K. Baker and Viktor K. Prasanna. A Methodology for Synthesis

of Efficient Intrusion Detection Systems on FPGAs. In IEEE Sym. on
Field Programmable Custom Computing Machines, April 2004.

[6] João Bispo, Ioannis Sourdis, João M. P. Cardoso, and Stamatis Vassil-
iadis. Regular expression matching for reconfigurable packet inspection.
In Proc. of IEEE International Conference on Field Programmable
Technology (FPT), pages 119–126, December 2006.

[7] C.R. Clark and D.E. Schimmel. Scalable pattern matching for high
speed networks. In Proc. of 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 249–257,
April 2004.

[8] Robert W. Floyd and Jeffrey D. Ullman. The Compilation of Regular
Expressions into Integrated Circuits. Journal of ACM, 29(3):603–622,
1982.

[9] B. L. Hutchings, R. Franklin, and D. Carver. Assisting Network Intrusion
Detection with Reconfigurable Hardware. In Proc. of 10th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), page 111, 2002.

[10] Cheng-Hung Lin, Chih-Tsun Huang, Chang-Ping Jiang, and Shih-Chieh
Chang. Optimization of Regular Expression Pattern Matching Circuits
on FPGA. In Proc. of Conference on Design, Automation and Test in
Europe (DATE), pages 12–17, 3001 Leuven, Belgium, Belgium, 2006.
European Design and Automation Association.

[11] Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan. Compiling PCRE to
FPGA for accelerating SNORT IDS. In Proc. of 2007 ACM/IEEE Sym-
posium on Architecture for Networking and Communications Systems
(ANCS), pages 127–136, New York, NY, USA, 2007.

[12] R. Sidhu and V.K. Prasanna. Fast Regular Expression Matching
Using FPGAs. In Proc. of 9th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 227–238, 2001.

[13] R. Smit, C. Estan, and S. Jha. Backtracking Algorithmic Complexity
Attacks against a NIDS. In Proc. of 22nd Annual Computer Security
Applications Conference (ACSAC), pages 89–98, Dec. 2006.

[14] Norio Yamagaki, Reetinder Sidhu, and Satoshi Kamiya. High-Speed
Regular Expression Matching Engine Using Multi-Character NFA. In
Proc. of International Conference on Field Programmable Logic and
Applications (FPL), pages 697–701, Aug. 2008.

[15] Yi-Hua E. Yang, Weirong Jiang, and Viktor K. Prasanna. Compact
Architecture for High-Throughput Regular Expression Matching on
FPGA. In Proc. of 2008 ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS), November 2008.

[16] Yi-Hua E. Yang and Viktor K. Prasanna. Software Toolchain for Large-
Scale RE-NFA Construction on FPGA. Intl. Journal of Reconfigurable
Computing, 2009:10, 2009.

