
A Comparison of Ruleset Feature Independent
Packet Classification Engines on FPGA

Andrea Sanny, Thilan Ganegedara, Viktor K. Prasanna
Ming Hsieh Dept. of Electrical Engineering

University of Southern California
Los Angeles, CA 90089

Email: {sanny, ganegeda, prasanna}@usc.edu

Abstract—Packet classification is used in network firewalls to
identify and filter threats or unauthorized network access at
the application level. This is realized by comparing incoming
packet headers against a predefined ruleset. Many solutions to
packet classification are available, but most of these solutions
exploit some features of the ruleset in order to minimize the
memory footprint of ruleset storage. However, when the ex-
pected ruleset features are not present, feature-reliant solutions
may yield poor memory efficiency. In this paper, we focus on
two ruleset independent packet classification schemes, Ternary
Content Addressable Memory (TCAM), a brute force search
method, and StrideBV, a bit-vector-based algorithmic solution,
to determine which solution is more suited for high performance
packet classification. Using ruleset sizes ranging from 32 to 2048
(targeted for firewall rulesets), we implement both schemes on
a Field-Programmable Gate Array (FPGA) to evaluate their
performance. We measure the performance using memory ef-
ficiency, resource consumption, throughput and power efficiency
metrics for both solutions. The post place-and-route results on a
state-of-the-art FPGA reveal that StrideBV has 4.5× and 3.5×
higher power efficiency in comparison with TCAM, along with
6× and 4× higher throughput when using distributed RAM and
block RAM as memory respectively. TCAM has better memory
efficiency, though its improvement over StrideBV varies.

Index Terms—Packet classification, FPGA, ASIC, Internet,
Firewalls, Network Security, TCAM

I. INTRODUCTION

With growing security threats, network security has become
a major concern in any type of a network. Network firewalls
act as the preliminary checkpoint for such threats which
provides security at the application (Layer-4) level [10], [7].
Packet classification is the scheme by which such firewalls
are realized. Packet classification inspects a predetermined
number of header fields from the packet and checks against
a set of rules to determine the forwarding decision. If a
threat or malicious traffic is encountered, they are dropped
and will not be further processed. Packet classification is
also used to distinguish between flows of traffic for packet
reassembly when performing Deep Packet Inspection (DPI)
type operations [4], [15], [16].

The challenge with implementing firewalls is supporting
wire-speed classification [3], [5]. With the high throughput

This work is supported by the United States National Science Foundation
under grant No. CCF-1116781. Equipment grant from Xilinx Inc. is gratefully
acknowledged.

and Quality of Service (QoS) demands in networking, high-
speed networking has become critical. Compared with best-
effort IP lookup, packet classification is more challenging due
to multiple header field inspection [13], [19]. Due to various
search requirements in each header field, the lookup operation
can be complex. The amount of storage required to store the
increasing number of rules is also a constraint especially on
hardware platforms such as Field Programmable Gate Arrays
(FPGAs) due to the limited amount of on-chip memory. Hence,
supporting scalability and high throughput is challenging.

To reduce memory consumption, most, if not all, solutions
exploit some properties (or features) of the ruleset, however
these solutions might not work as expected for all rulesets [18].
Different rulesets have different features, and may not contain
the exploited features used by a particular solution. Instead,
this ruleset dependency may yield poor memory efficiency
for solutions that are heavily reliant on the features. Ternary
Content Addressable Memory (TCAM) is a solution technique,
a brute force search, which is not dependent on ruleset
features [1], [2]. TCAM performs a parallel search against
all stored rules to find the matching rule within its memory
in a single clock cycle. They are commonly used for packet
classification and IP lookup because of its high-speed and
simplicity. Although, they are known to be expensive, as well
as power hungry compared with alternative solutions such as
Static Random Access Memory (SRAM)-based architectures.
Unlike SRAM that has only one row of memory array active
at a time, during a TCAM lookup, all entries are active,
causing relatively high power consumption. Though it is used
in practice, TCAM has many drawbacks, and there are many
algorithmic solutions available as alternatives to TCAM. One
such solution that also does not rely on the ruleset features
is StrideBV, a bit-vector-based approach [5]. StrideBV splits
the packet header fields and through the use of parallel
pipelines, which can achieve high throughput even for large
ruleset sizes. These two schemes can avoid the pitfalls of
feature-reliance, and be unaffected by the absence of expected
features, making them strong possibilities for a very reliable
packet classification solution despite the lack of knowledge
of the ruleset features, which could cripple solutions that rely
heavily on feature-exploitation.

We demonstrate in this paper a detailed comparison between
the ruleset feature independent packet classification engines.

Specifically, we compare the exhaustive search solution (i.e.
TCAM) versus the algorithmic solution (i.e. StrideBV) on
FPGA, in order to determine which approach is more suited
for high performance packet classification. Although TCAMs
are still used in networking equipment due to their simplicity,
their high power and resource consumption make them a less
desirable solution. An algorithmic solution such as StrideBV
is a potential alternative to TCAM, which can deliver high
throughput while having moderate resource consumption. We
employ the same implementation platform and evaluate the
performance of these two solutions head-to-head.

Using post place-and-route results on a state-of-the-art Xil-
inx Virtex 7 XC7VX1140T FPGA [22], we compare TCAM
and StrideBV for ruleset sizes starting at 32 rules to 2048
rules. To ensure a strong and a fair comparison, looking at
both ends of the spectrum in terms of possible firewall ruleset
sizes. The contributions of this work are summarized below:

• A quantitative and an exhaustive comparison of TCAMs
and StrideBV approaches for packet classification on
state-of-the-art FPGA

• A thorough evaluation of TCAM generated on FPGA for
various ruleset sizes

• Performance comparison of the two approaches with
respect to throughput, power, resource consumption and
scalability of each approach

• Use of FPGA chip floor-planning for StrideBV for further
improved performance

II. BACKGROUND AND RELATED WORK

A. Background

Packet classification is a widely deployed scheme as a
mechanism to filter malicious traffic and to enforce security
in a network by inspecting network traffic at application
level. It is also used as a mechanism to differentiate network
flows from each other where per flow operation is required.
Compared with the simplistic IP lookup, packet classification
is a more complex problem due to the inspection of multiple
fields. A match indicates that the incoming packet’s header
matches all fields of the rule. Typically, 5 − 8 fields are
used in packet classification which are collectively called
as a tuple. The most prominent scheme is 5 field packet
classification in which a tuple has the following header fields:
〈Source IP, Destination IP, Source Port, Destination
Port, Protocol〉. Other multi-field packet classification
schemes such as OpenFlow also exist which consider 12+
number of fields, but are used for different purposes such as
Software Defined Networking (SDN).

To determine the forwarding information for an incoming
packet, the packet header needs to be matched against a pre-
defined set of rules which is referred to as ruleset or classifier.
The rules are prioritized and the priority is determined by
the order in which the rules are stored in the classifier.
The topmost rule has highest priority while the last rule has
the lowest priority. Priority is necessary to determine the
forwarding information for packets that match with more than

one rule. In such situations, the highest priority rule out of the
matched rules is used as the rule to be applied on the packet.
However, it should be noted that some applications such as
Intrusion Detection Systems (IDSs) require all matching rules
to be reported.

Table I shows a sample packet classification ruleset. As it
can be seen, each field has its own matching requirement.
SIP and DIP fields require prefix matching, SP and DP fields
require range matching and the port field requires exact match.
This hinders one from using a single lookup scheme for
all the fields. Also, the SP and DP fields can be arbitrary
ranges in the sense that they might not be represented as
a single prefix. For most implementations (e.g. TCAM), a
prefix representation (binary or ternary) is desirable due to
the data structure requirements. While an arbitrary range can
be converted to prefixes, the number of rules generated can go
up to 2(w− 1) in the worst case, where w is the bit width of
the header field. Since two port fields exist, a single range rule
may potentially expand to 4(w − 1)2 rules, which is highly
undesirable from the memory requirement standpoint.

In the following section, we discuss some prominent imple-
mentation methods of packet classification.

B. Related Work

A myriad of solutions can be found in the literature that
perform packet classification [8], [18]. These techniques vary
from brute force solutions such as TCAM (and variants of it) to
more efficient algorithmic solutions. Even though algorithmic
solutions are plentiful in literature, TCAMs are still being
used in networking equipment mainly due to their simplicity.
However, TCAM is known to be power hungry and expensive,
hence is not considered as an efficient solution for network
related tasks. Efforts have been put on reducing the power
consumption of TCAM based solutions via partitioning so as
to disable the TCAMs that are not relevant for a given search
operation. Although this helps improving power efficiency, the
cost and power requirements are still not justifiable compared
with algorithmic solutions. The TCAMs being referred to
here are mainly Complementary Metal-Oxide Semiconductor
(CMOS) based. However, it can be seen in literature that
TCAMs are generated on FPGA fabric using the logic re-
sources available, to perform lookup operations. As we show
in Section V, such implementations are highly resource hungry
and may potentially use entire chip resources to build a small
size TCAM.

Algorithmic solutions on the other hand, are more efficient
and offer high flexibility. The existing algorithmic solutions
can be categorized into two main groups, namely, 1) Decision
tree-based and 2) Decomposition-based. In decision tree based
approaches, the ruleset is treated as a d-dimensional space (for
d number of fields), in which an axis represents one field. [14],
[7], [9] The decision tree is a mechanism to partition the d-
dimensional space into smaller size partitions such that, the
number of rules inside is small enough to perform a linear
search. Many variants of the decision tree based approach
exist in which, the tree height, the number of cuts per node,

TABLE I: Example packet classification ruleset

Source IP (SIP) Destination IP (DIP) Source Port (SP) Destination Port (DP) Protocol (PRT) Priority Action

128.125.2.0/24 128.143.200.0/24 0− 1023 ∗ UDP 0 PORT 4
128.125.0.0/17 ∗ 20− 21 20− 21 TCP 1 PORT 3
128.143.63.0/25 128.96.182.64/27 80 0− 1023 ∗ 2 DROP
128.96.12.45/32 128.69.43.0/28 ≥ 1023 ∗ ∗ 3 PORT 0
128.143.0.0/16 128.125.44.0/24 ∗ ∗ ICMP 4 PORT 3

the number of dimensions per node, the number of rules per
small partition, etc., are selected based on some optimization
criterion. The advantage of this method is that, since it is a tree
traversal, the tree structure can be mapped to a linear pipelined
architecture to achieve high throughput.

The second group of solutions, decomposition-based, takes
each field separately, perform search in each field and ag-
gregates the partial results to arrive at the highest priority
match [16], [11]. For example, the field searches can be
realized as tree/trie traversal. The output of each such field
is the identities of the rules that matched with the considered
header field. Once all the partial matches are available, the
final step is to identify the highest priority match, which is
done by finding the set intersection of the partial matches.
The main challenge in decomposition based techniques is
aggregating the partial results. Hashing, bit-vector and set
intersection techniques have been employed to perform this
step and each technique has its own limitations. For example,
hashing may potentially result in a large hash table, which
might not fit on the available on-chip memory of a device and
set intersection may not scale to larger problem sizes when
each header matches a larger number of rules than the set
intersection network can handle.

Both above mentioned algorithmic solutions are ruleset
feature reliant. Since the main limitation of high-performance
hardware platforms is memory, the main goal is to reduce the
memory footprint of the ruleset storage. This is not desirable
due to two reasons:

• The assumed features may not be present in a given
ruleset. In such cases the expected memory savings will
not be achieved and may potentially increase the memory
requirement instead of decreasing.

• Most solutions use some form of tree to perform search.
Typically, with increasing depth, the number of nodes in a
given level increases exponentially. When mapping such
solutions to pipelined hardware engines, the performance
will be dictated by the slowest stage and the slowest stage
is generally the one with the highest memory usage. Due
to the non-uniform memory distribution, the performance
is adversely affected.

III. RULESET FEATURE INDEPENDENT PACKET
CLASSIFICATION ENGINES

As mentioned in Section II, the only two approaches that
can be found in literature that performs ruleset feature inde-
pendent packet classification are StrideBV and TCAM. In this
section, we explain each approach in a concise manner.

A. StrideBV: Algorithmic Solution

1) Bit-Vector based Packet Classification: The first bit-
vector based approach for packet classification appears in [17].
Further developments of the same architecture are available in
[16], [11]. The usage of bit-vector is as an indexing mechanism
to identify the rules that matched with a header. The operation
of the bit-vector based packet classifier is explained here. Each
field lookup is performed using a chosen search technique
and the output of each lookup operation is a bit-vector. The
representation is as follows: For a classifier with N number
of rules, a bit-vector of N bits is used. If an incoming header
matched with the rule ri where i is the index (or the priority)
of the rule, the ith bit of the bit-vector is set to 1. For the
rule indices that did not match, the bit values are set to 0.
Therefore, at the end of each field search, a bit-vector in which
bit values corresponding all the matched rule indices set to 1
is output.

Once this step is complete, the bit-vector’s output from each
field search is aggregated. This is done by performing a bit-
wise logical AND of the partial results (i.e. bit-vectors). This
generates a bit-vector of length N , in which a bit at index
i is set to 1 if and only if all the partial bit-vectors had 1
at ith index. Essentially, the bit-vector indicates the rules that
matched with an incoming header, in all fields. In order to
identify the highest priority match, the index corresponding to
the lowest bit position set to 1 is extracted. At this point, the
packet classification is complete for the incoming header.

2) Field Split Bit-Vector (FSBV) Algorithm: FSBV was first
introduced in [11] as a solution to minimize the memory
footprint of packet classification engines. The key idea in
FSBV is to consider each bit of a header as a field and
perform search as explained in Section III-A1. The bit-vector
generation and packet classification operations are depicted in
Figure 1.

Each bit of a rule is viewed as a sub-field and two bit-
vectors are generated for each sub-field. One corresponding to
header value 1 and the other for 0. For example, for sub-field
i, two bit vectors are stored and based on the incoming packet
header’s ith bit value, one of the two bit-vector is loaded.
Similarly, bit-vectors are loaded for other bit positions and
then they are logically ANDed together to find the matching
rules in all fields. In [11], FSBV was applied to only the SP
and DP fields since FSBV results in memory efficiency only
when the number of unique rules per field is less than twice
the bit length of a field. Note that here a field means one of
the five fields in the 5-tuple header. For the fields that did
not satisfy the aforementioned condition, TCAMs generated

Rule Field fi

R1

R2

R3

R4

1001

101*

0100

1*10

R1 R2 R3 R4

0

1

0

1

0

1

0

1

fi[3]=

fi[2]=

fi[1]=

fi[0]=

Incoming packet

fi = 1011

fi[3]=1

M
u
l
t
i
-
m
a
t
c
h

r
e
s
u
l
t

FSBV

0 0 0

0

0

0 0

0 0

00

0

0 0

1 1

1

1

1

11

11

1

1

1

1

111

11

01 1 1

0 111

00 1 1

0 011

fi[2]=0

fi[1]=1

fi[0]=1

Fig. 1: Example of FSBV bit-vector generation and packet classification processes [5]

on FPGA were used.

3) StrideBV: In StrideBV the main motive is improving
the throughput of packet classification engines. It employs the
FSBV algorithm for the entire rule rather than restricting it to
SP and DP fields. In addition, instead of considering each bit
of the header as a sub-field, a stride of k bits is considered a
sub-field. It should be noted that by considering a k bit stride,
the number of bit-vectors per each sub-field increases to 2k,
as the bit-vectors corresponding to each k bit combination
needs to be stored. However, the number of such sub-fields is
reduced by a factor of 1/k compared with the uni-bit stride (or
FSBV). Hence, the total memory requirement increases only
by a factor of 2k/k.

The main advantage of StrideBV is that, it can be mapped
onto FPGA/ASIC type hardware architectures to achieve high
performance. Most solutions available in the literature require
either tree traversal or hash lookup. In the case of tree search,
the tree size grows exponentially with increasing depth and
the memory consumption of the last level of the tree can be
considerably high compared with the remaining stages. This,
especially on FPGA platforms, translates to higher access time
as larger memory blocks are generated by cascading multiple
smaller memory blocks and routing complexity increases when
the number of blocks used to generated a larger memory
increases. This has a negative impact on the clock rate since
in pipelined architectures, the clock rate is determined by the
slowest stage. Hence, even though the initial few stages are
able to operate at high clock rates, the overall pipeline speed
is set to the minimum clock rate across all stages. Similarly in
hash based search operations, the large hash tables cause the
same effect, hence achieving higher throughput is challenging.

However, with StrideBV, the memory consumption across
the pipeline is uniform and the stage structure is regular.
Therefore, the clock rate of the pipeline is not governed by
a single stage. Since the amount of computation in a single
stage is merely loading a bit-vector from stage memory and
performing bit-wise logical AND operation, the time spent for
the computation is minimal. Further, considering the resource
distribution of a FPGA chip, the StrideBV architecture can be
mapped onto the chip fabric in such a way that the routing
complexity can be minimized to achieve high-throughput.

B. TCAM

TCAM is a type of memory which operates differently than
SRAM/DRAM. For SRAM/DRAM, an address is given and
then the data residing in that address is output. With TCAM,
the content is given and the address at which the content
is available is output. In the case of packet classification,
the TCAM contains the ruleset. Similarly, for IP lookup, the
content will be the routing table. The distinction between
TCAM and Binary CAM (BCAM) is that a TCAM is able
to handle wildcards while BCAMs can only handle binary
strings. Therefore, TCAMs are widely used for IP lookup and
packet classification type applications.

The operation of a TCAM can be described as follows.
Upon receiving an input, the input is compared against all the
stored entries in a parallel fashion, in a single clock cycle. For
a given input, there can be more than one match since wildcard
search allows one to perform prefix search and a given input
may match multiple prefixes. In order to resolve the issues of
multiple matches, a priority encoder is integrated into TCAMs
to extract the highest priority match. The priority can simply
be the order in which the content is stored. In the case of IP
lookup, the prefixes can be stored by their prefix length and
this yields longest prefix match [20].

Although the operation of the TCAM is fairly simple, due
to the massively parallel search, the power consumption of
TCAM is relatively high compared with SRAM/DRAM based
solutions. A single TCAM cell requires 16 transistors while
a single SRAM cell requires only 6 transistors. In the case
of DRAM, the transistor count is 1 and it also includes a
capacitor. Even though the TCAMs and RAMs are not directly
comparable due to the nature of their operation, in the case of
networking applications, power efficient architectures can be
developed that outperform TCAMs with respect to power and
throughput.

IV. ARCHITECTURE

A. StrideBV

The basic StrideBV architecture utilizes uniform stages,
implemented with Static Random Access Memory (SRAM)
for stage memory storage of the 2k bit vectors corresponding
to each possible combination of the k bit stride. At each stage
s of the pipeline, the stride [sk : (s + 1)k − 1] is used as
the address to stage memory. The resulting output of stage

H
D
R
[
0
:
W
-
1
]

B
V
P
[
0
:
N
-
1
]

H
D
R
[
0
:
W
-
1
]

B
V
P
[
0
:
N
-
1
]

Stride

B
V
R
[
0
:
N
-
1
]

.

Pipelined Priority

Encoder (PPE)

log N stages

H
i
g
h
e
s
t

p
r
i
o
r
i
t
y

m
a
t
c
h

P
a
c
k
e
t

c
l
a
s
s
i
f
i
c
a
t
i
o
n

r
e
q
u
e
s
t

Stage (0) Memory

H
D
R
[
0
:
W
-
1
]

B
V
P
[
0
:
N
-
1
]

Stride

Stage (W/k-1) Memory

AND gate

network

AND gate

network

N

N

N

N

Fig. 2: StrideBV pipelined architecture with pipelined priority encoder [5]

memory is an N bit vector, which is ANDed with the bit
vector from the preceding stage to produce an intermediate
result to be sent to the next stage. The final output of the
initial pipeline is a multi-match result, however, in packet
classification, only the highest priority match is reported since
secure packet routing is the major concern than reporting
which rules matched for a given packet header. A priority
encoder can easily extract the desired match in a single cycle.
Although with longer bit vectors, the time it takes to find
the highest priority match increases proportional to the bit
vector length, which leads to a loss of throughput. To avoid
this potential problem, a Pipelined Priority Encoder (PPE) was
used at the end of the StrideBV pipeline. For an N bit vector,
a PPE consists of logN number of stages. In each stage,
only a small amount of work needs to be done, which means
that the PPE can operate at very high frequencies, avoiding
the performance bottleneck incurred by a single stage priority
encoder. StrideBV architecture is illustrated in Figure 2.

StrideBV can be implemented using either distributed RAM
or block RAM as stage memory. Originally, StrideBVs main
goal was to achieve a high throughput, with the concept that
using distributed RAM over block RAM would lower routing
delays. We consider both types of memory in this paper,
measuring performance in terms of power efficiency, through-
put, and resource consumption to determine which memory
is better suited for StrideBV, and to verify the scalability o
StrideBV using both types of memory while sustaining higher
throughput.

1) Distributed-Memory Based: The benefit of distributed
RAM lies in its location. Distributed RAM is implemented
using logic slices, allowing the logic and stage memory to
reside closely together, and with proper logic placement, will
result in significant reduction in wire length. This reduction
leads to a lower clock period, though the tradeoff for increased
throughput is the increase in loss of memory availability. With
larger architectures that require greater amounts of logic, there
may not be enough slices to map all of the required memory.
However, during the experiments with StrideBV, the memory
requirements never overreached the available distributed RAM
and, with careful placing, the clock rate could be further
improved, making the use of distributed RAM instead of block
RAM as the stage memory a strong contender.

2) Block-Memory Based: Block RAM is generally used
when memory consumption is a concern, due to its high
availability as a dedicated memory resource. Unlike distributed
RAM, there is no competition between ensuring enough
memory with logic slices while also using the logic for
the rest of the architecture. The separation from the logic
though is both the strength and weakness in block RAM.
Since block RAM is already firmly laid out on the FPGA,
there are greater limitations on placing the block RAMs close
to the logic, leading to longer wire lengths, which leads to
increased routing delay and poorer throughput. When running
experiments with block RAM, we attempted to improve the
routing delay with careful placement of logic in conjunction
to block RAM, to dampen the weakness of block RAM.

Further improvement can be done by employing a combi-
nation of distributed and block RAM for multiple pipelines,
achieving high throughput and utilizing all available resources.
The combination is not explored here in this paper, but can be
done to achieve 400G+ throughput.

B. TCAM

We use an FPGA implementation of TCAM [21] for our
experiments, instead of a standard ASIC implementation, for
a focused comparison of the two methods (the brute-force
solution versus the bit-vector based solution) on FPGA. The
architecture of the FPGA implementation is built differently
than the ASIC implementation, using the resources available
on the FPGA.

The basic functionality of the TCAM is shown as Figure 3.
A control block determines what needs to be done and
manages all functions. Before reading or writing, the TCAM
needs to process the input data and its address in order to map
to the appropriate memory block as well as encode the ternary
bits. For the memory block, at the output, the TCAM interprets
which address(es) contain the desired data and generate the
MATCH flags as well as register the outputs.

1) FPGA-based Architecture: Ternary CAM constructed
on the FPGA uses SRL16E-based memory, considering one
SRL16E to be thought of as a 16-bit deep by 1-bit wide RAM.
For a regular CAM, this translates into a 4-bit wide by 1-
bit deep CAM, however in the case of TCAM, one SRL16E
translates into a 2-bit wide by 1-bit deep, when taking into
account that a two-bit data input has a two-bit mask value for

Fig. 3: TCAM Implementation on FPGA [21]

the “don’t care” or ∗ condition (a 4-bit word). A 1 as the data
mask bit indicates ∗ and a 0 indicates that the value of the data
input matters for a match. A ternary encoder is used to convert
the data input and mask into a 4-bit output, each bit indicating
whether a 2-bit encoded value can match the incoming 2-bit
ternary value. Consider the four bits of the encoder as the A,
B, C, and D bit for the following example.

Using a single SRL16E, assume that the A bit is high only
if the ternary value can match 00 (the possible matches would
be 00, 0∗, ∗0, and ∗∗). ABCD are used as the address into
the SRL16E, and the output of the SRL16E is only high if the
ternary value matches the data stored at the address, signifying
a match. This logic is repeated for each address, and in the case
of more than one match, the TCAM will return the address
with the highest priority.

C. ASIC-based Implementations

In this work, we compare the two architectures implemented
on FPGA only. However, it is possible to implement both
architectures more efficiently on ASIC for better performance
in terms of throughput and power efficiency. Such customized
architectures can be optimized in terms of routing and cir-
cuit layout by exploiting the fine-grained control one has
over ASIC designs. This yields more efficient architectures
although due to the custom nature of these architectures,
they offer little or no flexibility for modifications, while an
architecture implemented on FPGA can be easily reconfigured
either statically or dynamically. When considering the Non-
Recurring Engineering (NRE) cost and overall time taken to
develop an architecture, FPGAs are superior compared with
ASIC.

An ASIC-based TCAM chip typically supports 200+ MHz
with a capacity of 18 Mbit and a power consumption of 15
W [2]. The amount of power dissipated is proportional to
the number of entries active in the chip as it is possible to
control the enabling of entries on a per entry basis. Hence,
the dynamic power can be controlled at a per active entry
granularity. In [2] it has been shown that the total static power
of a TCAM chip is around 0.8 W for 70 nm feature size.
Therefore, the per bit power consumption of a TCAM can be
calculated as 0.8 + (15−0.8)

104 ∗ N W, where N is the number
of packet classification rules (each 104 bits long). The direct

comparison of ASIC-based TCAM, mentioned previously,
with FPGA implementations of StrideBV reveal that ASIC-
based TCAMs have superior power performance, however,
the same power efficiencies can be achieved if StrideBV is
implemented on ASIC platforms. However, a comparison of
ASIC-based implementations is beyond the scope of this paper.

V. PERFORMANCE EVALUATION

In this section, we discuss our detailed performance analy-
sis, evaluating the results of experiments conducted on FPGA
Virtex 7 XC7VX1140T [22] with −2 speed grade. For a
thorough comparison of the two packet classification schemes,
we used ruleset sizes ranging from 32 to 2048 rules, and used
a stride size of 3 and 4 for StrideBV. The smaller the stride
size, the more resources are consumed, and the larger the
stride size, the more memory is needed per stage; the two
demands require a delicate balance to achieve the best results.
We employed stride size 3 and 4 to maintain that balance
between memory consumption and resource usage. Due to the
exponential increase in memory along with stride size [5],
going beyond the selected strides of 3 and 4 will result in
additional undesirable memory consumption. The performance
of the two architectures is measured in throughput, memory
efficiency, power and resource usage, using post place-and-
route performance from the Xilinx ISE 14.1 development
tools. The Virtex-7 device used has 178k logic slices which
supports a maximum of 18 Mbit distributed RAM, 68 Mbit of
block RAM, and 1100 Input/Output (I/O) pins.

A. Clock Frequency

Dual-port RAMs were used for stage memory, allowing
the StrideBV architecture to process two packets every clock
cycle, resulting in higher throughput than single-port RAM.
Furthermore, multiple pipelines could be employed through
the use of a combination of distributed and block RAM as
well to continue improving throughput, however we chose
not include those extra pipelines in our experiments, instead
focusing on the comparison the two approaches in a fair and a
detailed manner. Figure 4 shows the comparison of throughput
against the number of rules. The results are shown for the
TCAM implementation on FPGA, StrideBV with distributed

RAM as stage memory and StrideBV with block RAM as
stage memory.

With regards to throughput, the TCAM implementation on
FPGA has noticeably lower throughput than any of the cases of
the StrideBV architecture. Both approaches show the similar
trend of degrading throughput with regards to increase in
ruleset size. There was an average 6× throughput improvement
over TCAM for both a stride of 3 or 4 using distributed
RAM, and an average 4× improvement over TCAM for either
stride length using block RAM for memory. The advantage of
TCAM is that it has a lookup time of O(1), achieving a steady
access time when attempting to match an incoming packet with
the ruleset independent of any change in the size of the ruleset.
However, due to its large resource footprint and increased
routing on FPGA, the clock rate is lower, resulting in lower
throughput despite the O(1) lookup time. Using block RAM
results in a lower throughput than distributed RAM because
of the increased wire length between logic and memory, and
the distributed RAM version of StrideBV has an average
of 1.3× improvement in throughput over the block RAM
implementation. Block RAM has lower decline in throughput
overall as the ruleset size increases, unlike distributed RAM,
which must be carefully placed in order to effectively shorten
routing delays, and has equivalent results with its counterpart
for larger rulesets. However, as we show next, using chip floor-
planning the clock rate of the StrideBV implementation can
be further improved.

0 500 1000 1500 2000

Number of rules

0

100

200

300

400

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

distRAM, stride = 3
distRAM, stride = 4
BRAM, stride = 3
BRAM, stride = 4
TCAM on FPGA

Fig. 4: Throughput vs number of rules

The advantage of the StrideBV approach is the possible
exploitation of the resource layout of the FPGA architecture
to map the pipeline in a regular fashion onto the chip.
Using Xilinx PlanAhead, we thoroughly aligned the StrideBV
pipeline with the chip layout to ensure short wire lengths over
a minimized area, gaining considerable performance improve-
ments over simple place-and-route results. Figure 5 and 6 show
two examples of the gains we achieved when mapping the
pipeline using PlanAhead versus allowing the place-and-route
tool to do the placement of the pipeline without attempting
to optimize, one example with distributed RAM as memory
and a stride of 4, and the other example with block RAM as
memory and a stride of 3. Whether using distributed RAM
or block RAM, there is notable improvement with regards to
throughput when extensively mapping the pipeline. Careful

mapping can be the difference between 100 Gbps and 150
Gbps, as shown for stride 4 using distributed RAM for the
ruleset size of 1024.

32 64 128 256 512 1024 2048

Number of rules

0

50

100

150

200

250

300

350

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Without PlanAhead
With PlanAhead

Fig. 5: Throughput comparison: Distributed RAM, stride 4

32 64 128 256 512 1024 2048

Number of rules

0

20

40

60

80

100

120

140

160

180

200

220

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Without PlanAhead
With PlanAhead

Fig. 6: Throughput comparison: Block RAM, stride 3

B. Memory Consumption

Memory efficiency has always been a concern with packet
classification solutions, especially when working with plat-
forms like FPGA, which has limited on-chip memory. TCAM
has the lowest memory requirement in comparison with
StrideBV, which uses the stride lengths of 3 and 4 for this
comparison. Unlike StrideBV, TCAM’s architecture requires
only one table that contains the ruleset in its entirety, resulting
in a lookup time of O(1) when searching for a matching rule
to the incoming data. The memory requirement for TCAM is
double that of a regular CAM because of the added mask bit
included to cover the “don’t care” bit possibility. StrideBV’s
higher memory demand is a result of the pipelined architecture
and N × 2k-sized stage memory for stride length k, though
the memory requirement can be lowered by using a smaller
stride, if increased pipeline length (hence, slightly increased
packet latency) is acceptable.

Even with the worst case of 2048 rules, either architecture
can be implemented using only on-chip memory of distributed
RAM or block RAM, with the maximum of <900 Kbit for

0 500 1000 1500 2000

Number of rules

0

200

400

600

800

1000
M

e
m

o
ry

 R
e
q
u
ir
e
m

e
n
t

(K
b
it
) StrideBV, stride = 3

StrideBV, stride = 4

TCAM on FPGA

Fig. 7: Memory vs number of rules

StrideBV with a stride of 4. The memory requirement is
dependent on the number of rules and the stride length, and
so does not change when using block versus distributed RAM
for the stage memory for StrideBV; those effects resulting
from using different RAM as memory can be seen in the
comparison of throughput, power efficiency, and resource
consumption. Figure 7 shows the memory requirements for
both architectures, which have linear increasing trends for all
looked-at packet classification solutions.

Though extra parallel pipelines were not included in these
experiments, if additional parallel pipelines were desired either
with a single type of memory or by a combination of dis-
tributed RAM and block RAM, the total memory consumption
would need to include multiplication factors depending on the
number of pipelines. For example, using dual-ported stage
memory and implementing 6 parallel pipelines, a multipli-
cation factor of 3× would have to be included in the total
memory consumption calculation.

C. Resource Usage

We define resource consumption in this paper as the percent-
age of slices (a slice is a unit of logic resource) and bonded
IOBs utilized. The utilization results can be seen in Figure 8
and are shown for the TCAM and StrideBV architectures used
on FPGA. Unlike some of the other results which have higher
variance between TCAM and StrideBV (such as throughput),
the resource consumption between the different architectures
is a similar percentage despite the fact that the expectation
may be that less slices would be used for StrideBV using
block RAM instead of distributed RAM. However, work needs
to be done to go between the isolated BRAM and the logic
used, resulting in an increase in slices despite no conversion
of logic to memory. Only until larger ruleset sizes are used,
after N = 1024, does the consumption begin to delineate, with
block RAM consuming more than any of the other options.

TCAM and StrideBV for stride length 3 require more slices
and IOBs than stride length 4 of StrideBV. This phenomena is
directly linked to the tradeoff off between memory requirement
per stage and the number of stages. The larger the stride length,
the less stages are employed within the StrideBV architecture,
leading to less overall resource requirements even if the stage
memory increases. In the case of k = 4, there is an improve-
ment of 1.3× less slice usage than any of the other options.

When comparing the use of block RAM against distributed
RAM, more slices are required for the separate memory, and
significantly more is needed when larger ruleset sizes are
used. While the use of block RAM results in more resource
consumption for N = 2048 or greater, the other consequence
is similar throughput to StrideBV using distributed RAM,
which otherwise had noticeably higher throughput at lower
ruleset sizes until N = 1024, after which throughput results
become similar.

0 500 1000 1500 2000

Number of rules

0

10

20

30

40

50

60

R
e
so

u
rc

e
 C

o
n
su

m
p
ti
o
n
 (

%
 s

lic
e
s) distRAM, stride = 3

distRAM, stride = 4

BRAM, stride = 3

BRAM, stride = 4

TCAM on FPGA

Fig. 8: Resource consumption vs number of rules

We also observe the percentage of block RAM utilization for
StrideBV, shown in Figure 9. The worst-case scenario occurs
at k = 3 with N = 2048, utilizing all the available block
RAM fully. Real-life firewall classifiers rarely have more than
1000 rules [9], but if larger ruleset sizes were desired beyond
block RAM capabilities, distributed RAM can be utilized as
stage memory as well to continue to implement StrideBV
solely with on-chip resources available and increase allowable
ruleset size further than the current limit of 2048 if block RAM
is the desired memory. Distributed RAM has a higher limit,
since even at N = 2048, only about 40% of the resources
are consumed as shown in Figure 8. With the availability
of block RAM and distributed RAM, StrideBV can be very
flexible in its performance, and any mixture of distributed
RAM and block RAM can be used to increase throughput,
or ensure maximum resource consumption. Figure 7, Figure 8
and Figure 9 all have similar trends of increasing requirements
with the number of rules, due to the nature of the StrideBV
architecture, requiring more resources and memory for more
stages as N increases.

0 500 1000 1500 2000

Number of rules

0

20

40

60

80

100

B
R
A
M

 C
o
n
su

m
p
ti
o
n
 (

%
 B

R
A
M

)

stride = 3

stride = 4

Fig. 9: BRAMs consumed by StrideBV vs number of rules

TABLE II: Performance Comparison

Approach Memory Req. Throughput Power Eff.
(Bytes/rule) (Gbps) (µW/Gbps)

StrideBV (k = 3) distRAM 35 169 4934
StrideBV (k = 4) distRAM 52 182 6186
StrideBV (k = 3) BRAM 35 123 42404
StrideBV (k = 4) BRAM 52 133 30133

TCAM-FPGA 26 25 36837
TCAM-SSA [23] 13 20 5150

Pattern-Matching [6] 15 10 -
B2PC [12] 164 15 -

D. Power Efficiency
We used the XPower Analyzer tool available in the Xilinx

ISE 14.1 suite to measure the power consumption of our device
for the various cases shown. The results are presented in Figure
10 and the metric used is Watts per Gbps (W/Gbps). The power
consumed by logic, distributed RAM, and block RAM are all
reported in this figure.

There is a key improvement to power efficiency when
distributed RAM is used instead of block RAM. For both
stride lengths 3 and 4, distributed RAM has improved power
efficiency over block RAM by a noticeable margin. When
block RAM is utilized for a stride length of 3, its power
efficiency is 4.5× worse than either case of distributed RAM
employment, and 3.5× worse for a stride length of 4.

There is a significant gap between the power efficiency
of stride length 3 versus 4 when employing block RAM,
which increases with ruleset size. The average improvement
for k = 4 is 1.3× power efficiency in comparison to k = 3.
The lower power efficiency results from the higher resource
demands as well as the power demands of block RAM.
Since distributed RAM utilizes logic slices, there will be no
power consumption from additional block RAMs, leading to
distributed RAM having lower power and resource demands,
along with higher throughput, making it the stronger candidate
for memory in the StrideBV architecture. Block RAM may be
better suited as additional stage memory instead of the main
memory in the case of more pipelines being required beyond
the resource capabilities of distributed RAM alone to improve
throughput further.

The notable increase in power when using block RAM for
memory can be partially attributed to the necessity for longer
wires to connect the block RAM to the registers holding the
values between stages. When memory is held in distributed
RAM, the LUTs are physically closer to the memory and
are flexible in placement, while the block RAM is available
only in specific areas on the chip, separated from the registers.
Another reason that may have impacted the power results is
that the amount of block RAM required for memory is smaller
than the actual amount active. Block RAM has a minimum
size requirement, and at the strides of 3 and 4, some of the
block RAM is unused but still dissipates power. By using a
larger stride size, block RAM could be better utilized however,
the increase in memory consumption would be far beyond
the memory requirements of other approaches, making the
approaches incomparable.

0 500 1000 1500 2000

Number of rules

0

20

40

60

80

100

120

P
o
w

e
r

p
e
r

th
ro

u
g
h
p
u
t

(m
W

/G
b
p
s)

distRAM, stride = 3
distRAM, stride = 4
BRAM, stride = 3
BRAM, stride = 4
TCAM on FPGA

Fig. 10: Power per unit throughput vs number of rules

E. Comparison with Other Approaches

We also compare our results against a set of other existing
solutions for multi-match packet classification, continuing with
the assumption of 5-field classification and using a ruleset size
of 512 rules for this performance comparison. Table II shows
each approach’s results for memory requirement, throughput,
and power efficiency.

Using worst-case performance in this comparison, [23]
and [6] have better memory efficiency than either the TCAM
implementation on FPGA or StrideBV for either case of
using distributed RAM or BRAM for memory. The TCAM
implementation has more demanding memory requirements
due to the need for a data bit and a mask bit, which is
required to sustain the “don’t care” bit for every bit of the
stored ruleset, but it still has better memory requirement than
StrideBV. StrideBV has one of the highest demands due to
the parallel pipelined implementation, only lower than [12].
StrideBV, however, can make up for this deficit by being able
to improve its memory efficiency through the use of a smaller
stride length to achieve desired results, while other methods
cannot be as flexible with their memory efficiency, making
StrideBV a unique solution in this sense.

With regards to throughput, StrideBV has the highest
throughput by at least 6× for distributed RAM and 4×
for block RAM memory when compared against any other
approach, and also has the best power efficiency when using
distributed RAM for stage memory and k = 3, though close to
the power efficiency of [23]. Due to the separation of block
RAM and logic, StrideBV’s power efficiency is poor when
using block RAM and we can conclude from these results that
using distributed RAM can achieve higher performance results
with regards to both throughput and power efficiency. Though
the power efficiency of StrideBV using distributed RAM is
similar to the power efficiency of TCAM-SSA, a TCAM-
only approach which splits the filters for separate TCAM
lookup, StrideBV can be improved by adding more pipelines
and increasing the throughput further without immense gains
in power consumption, resulting in a stronger performance
against other solutions’ power efficiency at the cost of added
resources. The FPGA implementation of TCAM has low
power efficiency in comparison to other solutions except for

block RAM, and along with its small throughput, shows that
StrideBV is the more efficient method when using distributed
RAM. The memory efficiency of StrideBV can be altered with
stride size, but the high performance against other approach
cannot be so easily breached by other inflexible methods.

Overall, the lower performance of StrideBV using block
RAM as the main memory instead of distributed RAM, both
against the distributed RAM-based StrideBV and other packet
classification solutions, further cements the conclusion that the
decision in [5] to use distributed RAM was the correct choice.
Though the throughput is not immensely disproportionate in
the comparison, the power efficiency for block RAM shows
clearly that even though block RAM can hold its own with
only a slightly lower throughput, its low power efficiency
in comparison to distributed RAM makes distributed RAM
a much stronger choice. From the above comparison it is
obvious that the quality of being ruleset feature independent
and delivering high performance makes StrideBV a unique
packet classification solution.

VI. CONCLUSION

In this paper, we extensively evaluated two ruleset inde-
pendent packet classification solutions on a state-of-the-art
Field Programmable Gate Array (FPGA) platform. The two
schemes are Ternary Content Addressable Memory (TCAM) (a
brute-force solution) and StrideBV (an algorithmic approach).
We compared the performance of these two approaches with
respect to throughput, power efficiency, resource consumption
and memory efficiency. The post place-and-route results on
a large Xilinx Virtex 7 device showed that the algorith-
mic solution, StrideBV, outperforms the brute-force solution
TCAM by a considerable margin with respect to all the
metrics except for memory efficiency. The higher memory
consumption of StrideBV is due to the increased per stage
memory consumption.

We showed that the throughput of the StrideBV architecture
is nearly 6× and 4× higher than that of when using TCAM
when using distributed RAM and block RAM, respectively.
The power efficiency of StrideBV is 4.5× and 3.5× compared
with TCAM for distributed and block RAM, respectively.
Further, we showed that by exploiting the regular architecture
of StrideBV, it can be mapped on to the FPGA chip in an
efficient manner in order to reduce routing delays, which yields
higher clock frequency, hence higher throughput. Overall,
we conclude that the StrideBV solution is a more efficient,
algorithmic implementation of TCAM which yields higher
performance and hence become a potential alternative for
brute-force TCAM.

REFERENCES

[1] B. Agrawal and T. Sherwood. Modeling tcam power for next generation
network devices. In Performance Analysis of Systems and Software, 2006
IEEE International Symposium on, pages 120 – 129, march 2006.

[2] B. Agrawal and T. Sherwood. Ternary cam power and delay model:
Extensions and uses. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 16(5):554 –564, may 2008.

[3] Mike Attig and Gordon Brebner. 400 gb/s programmable packet parsing
on a single fpga. In Proc. 7th ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, pages 12–22, oct. 2011.

[4] Bro. The bro network security monitor. http://bro-ids.org/.
[5] Thilan Ganegedara and Viktor Prasanna. Stridebv: 400g+ single chip

packet classification. In Proceedings of the IEEE Conference on High
Performance Switching and Routing, HPSR’12, 2012.

[6] N. Guinde, S. Ziavras, and R. Rojas-Cessa. Efficient packet classification
on fgpas also targeting at manageable memory consumption. In
Signal Prcoessing and Communication Systems (ICSPCS), pages 1 –10,
december 2010.

[7] P. Gupta and N. McKeown. Classifying packets with hierarchical
intelligent cuttings. Micro, IEEE, 20(1):34 –41, jan/feb 2000.

[8] P. Gupta and N. McKeown. Algorithms for packet classification.
Network, IEEE, 15(2):24 –32, mar/apr 2001.

[9] Pankaj Gupta and Nick McKeown. Packet classification on multiple
fields. In Proceedings of the conference on Applications, technologies,
architectures, and protocols for computer communication, SIGCOMM
’99, pages 147–160, New York, NY, USA, 1999. ACM.

[10] G.S. Jedhe, A. Ramamoorthy, and K. Varghese. A scalable high
throughput firewall in fpga. In Field-Programmable Custom Computing
Machines, 2008. FCCM ’08. 16th International Symposium on, pages
43 –52, april 2008.

[11] Weirong Jiang and Viktor K. Prasanna. Field-split parallel architecture
for high performance multi-match packet classification using fpgas. In
Proceedings of the twenty-first annual symposium on Parallelism in
algorithms and architectures, SPAA ’09, pages 188–196, New York,
NY, USA, 2009. ACM.

[12] I. Papaefstathiou and V. Papaefstathiou. Memory-efficient 5d packet
classification at 40 gbps. In Proc. INFOCOM 2007. 26th IEEE
International Conference on Computer Communications. IEEE, pages
1370 –1378, may 2007.

[13] T. Sasao. On the complexity of classification functions. In Multiple
Valued Logic, 2008. ISMVL 2008. 38th International Symposium on,
pages 57 –63, may 2008.

[14] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. Packet
classification using multidimensional cutting. In Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols
for computer communications, SIGCOMM ’03, pages 213–224, New
York, NY, USA, 2003. ACM.

[15] Snort. Snort: Network intrusion prevention and detection system
(ips/ids). http://www.snort.org/.

[16] Haoyu Song and John W. Lockwood. Efficient packet classification
for network intrusion detection using fpga. In Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-programmable gate
arrays, FPGA ’05, pages 238–245, New York, NY, USA, 2005. ACM.

[17] T. Srinivasan, N. Dhanasekar, M. Nivedita, R. Dhivyakrishnan, and
A.A. Azeezunnisa. Scalable and parallel aggregated bit vector packet
classification using prefix computation model. In Parallel Computing
in Electrical Engineering, 2006. PAR ELEC 2006. International Sym-
posium on, pages 139 –144, sept. 2006.

[18] David E. Taylor. Survey and taxonomy of packet classification tech-
niques. ACM Comput. Surv., 37(3):238–275, September 2005.

[19] D.E. Taylor and J.S. Turner. Scalable packet classification using
distributed crossproducing of field labels. In INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings IEEE, volume 1, pages 269 – 280 vol. 1, march
2005.

[20] Wikipedia. Longest prefix match. http://en.wikipedia.org/wiki/Longest
prefix match.

[21] Xilinx. Cam application notes. http://www.xilinx.com/support/
documentation/anmeminterfacestorelement cam.htm,.

[22] Xilinx. Virtex-7 fpga family. http://www.xilinx.com/products/
silicon-devices/fpga/virtex-7/index.htm.

[23] F. Yu, T. Lakshman, M. Motoyama, and R. Katz. Ssa: A power
and memory efficient scheme to multi-match packet classification. In
Proceedings of the 2005 ACM symposium on Architecture for networking
and communications systems, pages 105 –113, 2005.

