
High-performance Architecture for Dynamically
Updatable Packet Classification on FPGA∗

Yun R. Qu, Shijie Zhou, and Viktor K. Prasanna
Ming Hsieh Dept. of Electrical Engineering, University of Southern California

Los Angeles, CA 90089, U.S.A
yunqu@usc.edu, shijiezh@usc.edu, prasanna@usc.edu

ABSTRACT
Algorithms and FPGA based implementations for packet
classification have been studied over the past decade. Al-
gorithmic solutions have focused on high throughput; how-
ever, supporting dynamic updates has been challenging. In
this paper, we present a 2-dimensional pipelined architec-
ture for packet classification on FPGA, which achieves high
throughput while supporting dynamic updates. Fine grained
processing elements are arranged in a 2-dimensional array;
each processing element accesses its designated memory lo-
cally, resulting in a scalable architecture. The entire array
is both horizontally and vertically pipelined. As a result,
it supports high clock rate that does not deteriorate as the
length of the packet header or the size of the rule set in-
creases. The performance of the architecture does not de-
pend on rule set features such as the number of unique val-
ues in each field. The architecture also efficiently supports
range searches in individual fields. The total memory is pro-
portional to the rule set size. Dynamic updates– modify,
delete and insert operations for the rule set during run-time
are also supported on the self-reconfigurable processing ele-
ments with very little impact on the sustained throughput.
Experimental results show that, for a 1K 15-tuple rule set,
a state-of-the-art FPGA can sustain 190Gbps throughput
with 1million updates/second. To the best of our knowledge,
we are not aware of any packet classification approach that
simultaneously supports both high throughput and dynamic
updates of the rule set. Our architecture demonstrates 4×
energy efficiency while achieving 2× throughput compared
to TCAM.

1. INTRODUCTION
Software Defined Networking (SDN) has been proposed as

a novel architecture for enterprise networks. SDN separates
the software-based control plane from the hardware-based
data plane, and uses a flexible protocol– OpenFlow [1] to
manage network traffic. One of the kernel function Open-
Flow performs is the flow table lookup [2, 3]. The flow table
lookup requires multiple fields of the incoming packet to be
matched against entries in a prioritized flow table. This is
similar to the classic multi-field packet classification mecha-
nism [4].

Many existing solutions for multi-field packet classification
employ ternary content addressable memories (TCAMs) [5,
6]. TCAMs cannot support efficient dynamic updates; they

∗Supported by U.S. National Science Foundation under
grant CCF-1116781. Equipment grant from Xilinx, Inc. is
gratefully acknowledged.

are expensive and power-hungry. TCAM-based solutions
also suffer from range expansion when converting ranges into
prefixes [6].

Field-Programmable Gate Array (FPGA) technology has
been used to implement algorithmic solutions for real-time
network processing [7, 8]. FPGA-based packet classification
engine can achieve very high throughput for rule sets of mod-
erate size [9]. However, as the number of packet header fields
or the rule set size increases, FPGA-based approaches often
suffer from clock rate degradation. Since the OpenFlow pro-
tocol requires a large number of packet header fields to be
examined [2], OpenFlow packet classification remains a chal-
lenging research problem.

Future network applications following OpenFlow standard
require the hardware to perform frequent incremental up-
dates during run-time. Since it is prohibitively expensive
to reconstruct an optimal architecture repeatedly for timely
updates, a flexible and run-time reconfigurable hardware-
based engine is needed for OpenFlow packet classification.
While many sophisticated solutions have been proposed for
packet classification supporting dynamic updates over the
years [10], due to the rapid growth of the network size and
the bandwidth requirement of the Internet, supporting dy-
namic update without loss of throughput performance re-
mains challenging.

With the above challenges in mind, in this paper we present
a scalable architecture for packet classification on FPGA.
The architecture consists of multiple self-reconfigurable Pro-
cessing Elements (PEs); it sustains high performance for
packet classification and supports efficient dynamic updates
of the rule set. The rule set features, the size of the rule set,
and the packet header length all have little effect on the per-
formance of the architecture. Specifically, our contributions
in this work include:

• Scalable architecture: A 2-dimensional pipelined ar-
chitecture on FPGA, which achieves scalability with
respect to the size of the rule set and sustains high
throughput for OpenFlow packet classification.

• Distributed update algorithms: A set of algorithms sup-
porting dynamic updates– modify, delete and insert
operations for rule set on the proposed architecture.
The algorithms are performed distributively on self-
reconfigurable PEs. The update operations have little
impact on the sustained throughput performance.

• Implementation tradeoffs: Tradeoffs between various
design parameters and performance metrics, including

Table 1: Example OpenFlow packet classification rule set

RID Ingr
Meta- Eth Eth Eth

VID
VLAN MPLS MPLS

SA DA Ptrl Tos SP DP Action
data src dst type priority label tfc

R0 5 * 00:13 00:06 0x0800 * 5 0 * 001* * TCP 0 * * Action 0
R1 * * 00:07 00:FF * 100 7 16000 0 00* 1011* UDP * * * Action 1
R2 * * * 00:00 0x8100 4095 7 * * 1* 1011* * * 2 5 Action 0
R3 1 * 00:FF * * 4095 * * * 1* 1* * 0 7 5 Action 2

rule set size, throughput, update rate and resource con-
sumption.

• Superior throughput : Detailed performance evaluation
of our proposed architecture on a state-of-the-art FPGA.
We show in post-place-and-route results that our archi-
tecture sustains a throughput of 190Gbps with 1million
updates/second (M updates/s) for a 1K 15-tuple rule
set.

• Energy efficiency : Detailed comparison of our archi-
tecture with existing solutions for packet classification
with respect to energy efficiency. Compared to TCAM,
our architecture sustains 2× throughput and supports
fast dynamic updates with 4× energy efficiency.

The rest of the paper is organized as follows: Section 2 in-
troduces the classic multi-field packet classification problem
and its OpenFlow variant. We summarize existing packet
classification techniques in Section 3. We detail the design
of the 2-dimensional pipelined architecture in Section 4, and
we present the update algorithms on this architecture in Sec-
tion 5. Section 6 provides the experimental results. Section 7
concludes the paper.

2. BACKGROUND

2.1 Classic Packet Classification
The classic packet classification [4] involves classifying pack-

ets based on the five fields in the packet header: the source/
destination IP addresses, source/destination port numbers,
and transport layer protocol. The individual predefined en-
tries for classifying a packet are called rules; each rule is
associated with a unique rule ID (RID). The data set con-
taining all the rules is called rule set. Different fields in a
rule require different types of match criteria such as prefix
match, range match, and exact match. A packet is consid-
ered matching a rule only if it matches all the fields in that
rule. A packet may match multiple rules, but only the rule
with the highest priority is used to take action. The total
number of rules in a rule set is usually less than 100K [11].

2.2 OpenFlow Packet Classification
A newer version of packet classification– flow table lookup

in OpenFlow requires a larger number of packet header fields
to be examined; we use OpenFlow packet classification and
flow table lookup interchangeably in this paper. For exam-
ple, in the current specification of OpenFlow protocol [2,
3], a total number of 15 fields consisting of 356 bits in the
packet header have to be compared against all the rules in
the rule set. We show an example rule set in Table 1. As
can be seen, a specific field of each entry in the rule set for
OpenFlow packet classification usually contains a prefix1.

1A value and ANY (denoted as * in Table 1, which matches
any value) can both be viewed as a prefix.

Table 2: Classic and OpenFlow packet classification

Type Classic OpenFlow

Match criteria prefix, range, exact prefix
Number of fields (d) 5 15

Packet header bits (L) 104 [12] 356 [2]
Update Relatively static ≤ 10K updates/s [11]

We summarize the differences between the classic packet
classification and OpenFlow packet classification in Table 2.
Compared to the classic packet classification, there are two
new challenges for OpenFlow:

• OpenFlow requires a large number of bits and packet
header fields to be processed for each packet; it is chal-
lenging to achieve high performance.

• OpenFlow places high emphasis on dynamic updates
(rule modification, deletion and insertion); it is chal-
lenging to design a flexible fast update scheme for the
rule set.

3. PRIOR WORK

3.1 Packet Classification Techniques
Packet classification has been extensively studied over the

past decade [4, 13]. Hardware-based packet classification ap-
proaches can be categorized into two major groups: decision-
tree based and decomposition based approaches.

Decision-tree based approaches involve cutting the search
space into smaller subspaces based on the information from
one or more fields in the rule. [14] proposes to map the
decision tree onto a pipelined architecture on FPGA; for a
rule set containing 10K rules, a throughput of 80Gbps is
achieved for packets of minimum size (40 bytes). However,
as the number of rulesN increases, the memory consumption
of each pipeline stage grows at a rate of O(N). As a result,
more memory modules have to be used and longer wires
are needed for interconnection, which adversely affects the
overall pipeline throughput.

Decomposition based approaches [15, 16] first search each
packet header field individually. The partial results are then
merged to produce the final result. As a decomposition based
approach, Bit Vector (BV) approach [17] is a specific tech-
nique in which the lookup on each field returns an N -bit
vector. Each bit in the bit vector corresponds to a rule. A
bit is set to “1” only if the input matches the corresponding
rule in this field. A bit-wise logical AND operation gathers
the matches from all fields in parallel.

3.2 BV-based Approaches on FPGA
In [12], a Field-Split BV (FSBV) approach on FPGA was

proposed. In the FSBV approach, each rule in a W -bit field
is represented by a W -bit ternary string; each string consists

 0 1 0 1 0 1 0 1

 0 1 0 1 1 1 1 1

 1 0 0 1 1 0 0 1

 0 1 0 1 1 0 1 1

Rule
ID

4-bit
field

 11**

 0101

 110*

rule set

e.g. the corresponding
4-bit field of the input

packet header:

&

Results

BV array bit vector

1

0

1

1

1

1

1

1

1

1

0

1

& &
1

0

1

BV arrays

Figure 1: BV approach (L = 4)

 00 01 10 11 00 01 10 11

 0 0 0 1 1 1 1 1

 0 1 0 0 0 1 0 0

 0 0 0 1 1 1 0 0

Rule
ID

4-bit
field

 11 **

 01 01

 11 0*

BV arrays ()

 BV array

1

1 0

1 0

bit vector

rule set

Figure 2: Striding

of W “subfields2” on {0, 1, ∗}. W -sets of bit vectors each of
length N can be generated; each bit of a specific bit vector
corresponds to a packet classification rule. The example in
Figure 1 shows, for a rule set consisting of 3 4-bit rules (N =
3, W = 4), 4 sets of bit vectors can be generated, each of
length 3. For each 1-bit subfield, a set of 2 bit vectors of
length N = 3 are generated. A bit in the bit vectors is
set to “1” only if the input matches the corresponding rule.
The input bits are used directly to address the memory and
extract bit vectors. FSBV proposes to perform logical AND
operations in a pipelined manner on all the extracted bit
vectors to generate the final match result on FPGA. [12]
provides the algorithms to construct the bit vectors for prefix
match or exact match fields; however, since FSBV requires
rules to be represented in ternary strings, it suffers from
range expansion when converting ranges into prefixes [18].

In the FSBV approach, the memory organization for each
pair of bit vectors (2 addresses, N -bit data) underutilizes the
memory on FPGA (See Section 6), which affects the achiev-
able clock rate negatively. One optimization for this is to use
striding technique– StrideBV [9]. The basic idea is to par-
tition each field into many multi-bit subfields (strides), in-
stead of single-bit subfields in the FSBV approach. As shown
in Figure 2, to map the StrideBV approach onto FPGA, a
memory with 4 addresses and data width of 3 bits is needed
in each pipeline stage. However, StrideBV still does not
support range match for packet classification. Also, as the
number of rules N increases, the clock rate often deteriorates
since wires of length O(N) have to be used for the memory
storing N -bit data.

3.3 Supporting Dynamic Updates
Although dynamic updatable packet classification has been

a well-defined problem for years [10], we are not aware of any

2Defined as a specific bit position of the classification rules.

Bit vector

Input packet
header bits

… Re
gi

st
er

s

Pi
pe

lin
ed

 P
rio

rit
y

En
co

de
r

g

Hi
gh

es
t-

pr
io

rit
y

m
at

ch

Bit vector

Re
gi

st
er

s

 M
em

or
y

AND

M
em

or
y

Re
gi

st
er

s

Input packet I

PE

Pr
io

rit

Figure 3: Basic architecture for BV-based approaches [9]

solution on FPGA which supports both high performance
and fast dynamic updates. [10] proposes two algorithms
based on tree/trie structures to support dynamic updates.
These algorithms require O(logd N) and O(logd+1 N) update
time, respectively, for a d-field rule set consisting of N rules;
they are too expensive for OpenFlow packet classification
(d = 15). For most decision-tree based approaches, if the
rule set needs to be updated, the tree must be recomputed
and mapped onto FPGA, which is very expensive. Some
of the decomposition based approaches [16] explore the use
of external memory; for each update, a number of external
memory write accesses must be performed. This is also very
expensive. In this paper, we present a high-performance ar-
chitecture for packet classification; each PE in this architec-
ture is self-reconfigurable and dynamically updatable. We
propose an efficient update scheme on this architecture.

4. ARCHITECTURE

4.1 Challenges
Let us denote the input bits in subfield j as kj ; we use kj

to directly index the bit vectors for subfield j. We use b
(kj)

j

to denote the kj-th bit vector in subfield j. Note that the
length of each bit vector is N . We denote the data structure
that stores the bit vectors corresponding to a given subfield
as bit vector array (BV array), as shown in Figure 1; a BV

array consists of all b
(kj)

j with the same j. In Figure 2, each
stride of 2-bit length is associated with a N × 2s = 3× 4 BV
array, where the index kj for each array consists of 2 bits.
An N × 2s BV array is stored in a 2s ×N memory.
We denote the length of a subfield (stride length) as s and

the total length of the input packet header bits as L (e.g.
L = 356 bits for OpenFlow packet classification). FSBV can
be visualized as a special case where s = 1; we apply the
FSBV approach to all the fields (in total L bits) instead
of two W -bit fields [12]. Since we partition all the fields
into subfields of the same length s, there are in total

⌈
L
s

⌉

subfields for an input header of L bits. Thus we have all
the s-bit subfields indexed as j = 0, 1, ...,

⌈
L
s

⌉− 1. Figure 2
shows an example of constructing strided bit vectors (s = 2)
from a rule set.

After we have constructed all bit vectors in all the sub-
fields, we use the input header bits kj ’s to address the cor-
responding bit vectors in the BV arrays. For a subfield j,

b
(kj)

j is extracted for the input bits kj . For example, in Fig-
ure 2, if the input has k0 = 10 in the subfield j = 0, we have

the bit vector to be extracted from memory is b
(10)
0 = 100,

indicating only R0 matches the input in this subfield.
In the pipelined architecture for BV-based approaches on

FPGA as shown in Figure 3 [9], each stage extracts a bit

modular PE

Comparator
(>=)

Da
ta

 m
em

or
y

Comparator
(<=)

Re
gi

st
er

g

Register

packet header bits p

M
U

X

eg
ist

e

M
U

X

-bit
AND

ou
tp

ut
 fr

om
 p

re
vi

ou
s P

E
(le

ft
)

ou
tp

ut
 to

 n
ex

t P
E

(r
ig

ht
)

Rule decoder R l

egiste

e deco

D

e

Da
ta

 m
em

or
yy

e deco

AND

-bit
AND

CC

CoCCC

Figure 4: Modular PE supporting prefix/range match

vector for a subfield; this bit vector is ANDed with the bit
vector output by the previous stage. The AND result in a
particular stage is output to the next stage. Excluding the
priority encoder, we have

⌈
L
s

⌉
PEs3 in this pipeline. We de-

note such an architecture as a basic pipelined architecture or
basic pipeline. There are two main problems in this archi-
tecture:

1. The classic packet classification requires range match
to be performed in the port number fields– 16-bit source
port number (SP) or destination port number (DP).
Since FSBV as well as StrideBV does not support range
match directly, they often need a range-to-prefix con-
version; this can lead to rule set expansion [18].

2. In BV-based approaches, no matter whether we use
striding or not, the bit vectors in each pipeline stage
for N rules are N -bit long. For distributed RAM (dis-
tRAM) or Block RAM (BRAM) module of fixed size4,
the number of memory modules needed for each pipeline
stage grows linearly with respect to N . This means the
length of the longest wire connecting different mem-
ory modules together also increases at a rate of O(N),
which degrades the throughput performance of the pipeline.

To address the first problem, we construct a modular PE
which handles both range match and prefix match (Sec-
tion 4.2). To address the second problem, we propose a
2-dimensional pipelined architecture. In Section 4.3, we con-
struct horizontal and vertical pipelines using multiple mod-
ular PEs, and then present the overall architecture. Finally
we show optimizations of this architecture in Section 4.4.

4.2 Modular PE
Let us first consider the internal organization of a basic

PE, which handles only one rule (N = 1) in a 1-bit subfield
(s = 1). We construct a modular PE as shown in Figure 4;
such a modular PE can handle both range match and pre-
fix match. A 2-dimensional pipelined architecture can be
constructed using multiple modular PEs (Section 4.3); with

3We use PE to denote a pipeline stage that is responsible
for producing a bit vector.
4e.g. 64-bit distRAM based on 6-input Look Up Table
(LUT) and 36Kb SRAM-based BRAM [19].

optimization techniques, a modular PE can also handle mul-
tiple rules and strided subfields (Section 4.4).
We denote a rule requiring prefix match as a prefix rule,

while we denote a rule requiring range match as a range rule.
For a 1-bit subfield, the prefix rule can be handled efficiently
using FSBV approach. In Figure 4, the packet header bit
is used to address the memory directly; the extracted bit
vector is then ANDed with the bit vector output from the
previous PE in the pipeline.
A range rule in a 1-bit subfield [x1, x2] (x1 ≤ x2) can be

represented using a lowerbound x1 and an upperbound x2.
Hence we use two parallel comparators to examine whether
the input matches the range rule. We use 1 bit to indi-
cate the result of each comparison (“0” for mismatch and
“1” for match); as shown in Figure 4, a 1-bit logical AND
gate is used to merge the 2 comparison results. In our im-
plementation, the higher-order bits in a field requiring range
match are always handled first in the pipeline, followed by
the lower-order bits of this field. Notice that:

• The result of each comparison also depends on the com-
parison result from the previous modular PE (on the
left, handling a higher-order bit of the range). If the
previous modular PE already reports a mismatch, the
output of the modular PE can only be a mismatch,
since the input packet header does not match the range
rule in higher-order bits.

• Suppose the previous modular PE reports a match.
The “comparator (>=)” outputs a “1” only if the input
is greater than or equal to x1, while the “comparator
(<=)” outputs a “1” only if the input is less than or
equal to x2.

• A multiplexer (MUX) is added into the modular PE,
which is controlled by the rule decoder. Depending on
the control signal that rule decoder provides, the MUX
either outputs the range match result, or the prefix
match result. Details about the rule decoder will be
introduced later.

The amount of memory required for storing an N×2s = 1×2
BV array is 2×1 bits, while the memory required for storing
a 1-bit lowerbound and a 1-bit upperbound is also 2×1 bits.
This means the data memory shown in Figure 4 needs to
be configured to have 2 locations, each storing a 1-bit data.
The data memory is used either as the storage for the BV
array, or as the storage for the range boundaries.
The modular PE also has other components added, such

as rule decoder and the register for input packet header bits.
We denote the register for the input packet header bits as
the input register ; we denote the register after MUX as the
output register. The rule decoder is mainly used for dynamic
updates (Section 5), while the input register is used to con-
struct a vertical pipeline (Section 4.3).

4.3 2-dimensional Pipelined Architecture
To handle a larger number of rules and more input packet

header bits, we use multiple modular PEs to construct a
complete 2-dimensional pipelined architecture as shown in
Figure 5. We define the following directions:

Horizontal the forward (right) and backward (left) di-
rection in which the bit vectors are propagated in a
pipelined fashion

PE
[0,0]

PE
[1,0]

PE
[2,0]

PE
[3,0]

PE
[0,1]

PE
[1,1]

PE
[2,1]

PE
[3,1]

PrEnc

PrEnc

PrEnc

PrEnc

 bits

final
result

PE
[0,2]

PE
[1,2]

PE
[2,2]

PE
[3,2]

Figure 5: An example of the 2-dimensional pipelined archi-
tecture (N = 4, L = 3, 12 modular PEs)

Vertical the upward (up) and downward (down) direction
in which the input packet header bits in a subfield j is
propagated in a pipelined fashion

In Figure 5, we use PE[l, j] to denote the modular PE lo-
cated in the l-th row and j-th column, where l = 0, 1, 2, 3
and j = 0, 1, 2. We use distRAM for the memory in each
PE, so that the overall architecture can be easily fit on FPGA
and the memory access in each PE is localized.

For the architecture in Figure 5, we use input registers in
modular PEs to construct vertical pipelines (e.g. PE[0, 0],
PE[1, 0], PE[2, 0], PE[3, 0]), while we use output registers in
modular PEs to construct horizontal pipelines (e.g. PE[0, 0],
PE[0, 1], PE[0, 2]). Notice:

1. L bits of the packet header is input from the top, and
the output is finally collected in the bottom-right cor-
ner.

2. Since we do not require the rules to be arranged in the
rule set following any specific order, we need a prior-
ity encoder (PrEnc) [9] at the end of each horizontal
pipeline to report the highest-priority match.

3. The match results of all the horizontal pipelines are
also collected by priority encoders in a pipelined fash-
ion (a vertical pipeline for priority encoders).

4. The data propagated in the horizontal pipelines consist
of bit vectors (wide shaded arrows in Figure 5); the
data propagated in the first horizontal pipeline also
consist of input packet header bits (wide empty arrows
in Figure 5).

5. The data propagated in the vertical pipelines of PEs
consist of packet header bits; the data passed between
priority encoders are RIDs (narrow arrows in Figure 5).

Since each modular PE constructed in Section 4.2 performs
a range/prefix match for one rule in a 1-bit subfield, the
architecture in Figure 5 consisting of 4 rows and 3 columns
of modular PEs can handle 4 rules, each rule having 3 1-bit
subfields. Using more modular PEs, this architecture can
be scaled for a large number of rules, and for long packet
headers. For a rule set consisting of N rules, and an L-
bit packet header, the architecture requires N rows and L
columns of PEs to be connected in a pipelined fashion.

modular PE with
striding/clustering

Comparator (>=)

Da
ta

 m
em

or
y

Comparator (<=)

Re
gi

st
er

g

Register

packet header bits p

M
U

X

eg
ist

e

M
U

X

-bit
AND

ou
tp

ut
 fr

om
 p

re
vi

ou
s P

E
(le

ft
)

ou
tp

ut
 to

 n
ex

t P
E

(r
ig

ht
)

Rule decoder R l

egiste

e decoe

Da
ta

 m
em

or
y

ecoe de

AND

CCCo

CoCC

C

ompCoCC

…

-bit
AND

-bit
AND

…

g

Figure 6: PE with striding and clustering techniques

4.4 Striding and Clustering
Striding technique can be applied to the modular PE shown

in Figure 4. Suppose the modular PE only needs to perform
packet header match against one rule. Based on the striding
technique discussed in Section 3.2, the amount of memory
required for prefix match in a s-bit subfield is 2s × 1; for
range match, the amount of memory for storing 2 s-bit range
boundaries is 2× s. Hence we configure the data memory in
a PE to be 2s × s, so that the data memory can hold either
a BV array or 2 range boundaries. Also in Figure 4, the
1-bit AND gate on the right of the 2 comparators needs to
be adjusted into an s-bit logical AND gate. The length of
the input register is s bits because we have s input packet
header bits when using striding technique.
Besides the striding technique, we also introduce a cluster-

ing technique for the modular PE in the architecture. The
basic idea is to build a PE which can handle multiple rules
instead of a single rule. Suppose the modular PE now needs
to perform packet header match against n rules. We have:

1. For prefix match, we construct a BV array consisting
of 2s bit vectors, each of length n; this requires a data
memory of size 2s × n. The 1-bit AND gate below the
2 comparators in Figure 4 needs to be adjusted into an
n-bit logical AND gate.

2. For range match, the data memory needs to store 2
s-bit range boundaries for each rule. Therefore the
data memory has to be configured as 2n × s. The 2
comparators in Figure 4 needs to be expanded into 2n
comparators, and the AND gate on the right of the
comparators is replaced by n parallel 1-bit AND gates.

3. To use the data memory as storage for both the BV
array and the range boundaries, the data memory is
configured to be max[2s, 2n]×max[n, s].

We show a modular PE with striding (varying s) and cluster-
ing (varying n) techniques in Figure 6. A modular PE with
striding and clustering techniques perform packet header
match in an s-bit subfield against a set of n rules; the re-
sulting 2-dimensional pipelined architecture has

⌈
N
s

⌉
rows

and
⌈
L
s

⌉
columns of PEs. As can be seen, the modular PE

without striding and clustering techniques in Figure 4 is a
special case when s = 1 and n = 1.

5. DYNAMIC UPDATES

5.1 Problem Definition
OpenFlow packet classification requires the hardware to

adapt to frequent incremental updates for the rule set dur-
ing run-time. In this section, we propose a dynamic update
scheme which supports fast incremental updates of the rule
set without sacrificing the pipeline performance. Before we
detail our update mechanism, we define the following terms:

Old rule the rule to be modified in the rule set

New rule the rule to appear in the rule set after an update

Outdated (data structure) (data structure, e.g. bit vec-
tor, BV array, range boundary, and valid bit) that
needs to be updated

Up-to-date (data structure) (data structure) that is al-
ready updated

Given a rule set Φ consisting of N rules {Ri|i = 0, 1, ..., N−
1}, we reiterate the problem definition of dynamic updates
as three subproblems:

Modify Given a rule with RID R, and all of its field values
and priority, search RIDR in Φ, locate i ∈ {0, 1, ..., N−
1} where Ri = R; change rule Ri in Φ into rule R (e.g.
change the SA field of R1 in Table 1 from 00* into 0*)

Delete Given a rule with RID R, search RID R in Φ, locate
i ∈ {0, 1, ..., N −1} where Ri = R; delete rule Ri from
Φ (e.g. remove R0 completely from Table 1)

Insert Given a rule with RID R, and all of its field values
and priority, search RID R in Φ. If Ri �= R for ∀i ∈
{0, 1, ..., N−1}5, insert rule R into Φ (e.g. add a brand
new rule as R4 into Table 1)

Suppose in the architecture, all modular PEs are imple-
mented with striding and clustering techniques; each of these
PEs stores either (1) a BV array of size n × 2s for a prefix
match subfield, or (2) 2n s-bit range boundaries for a range
match subfield, as discussed in Section 4.4.
Notice that the first step of all update operations is always

a RID check, which reports whether the RID of the new
rule exists in the current rule set. RID check only requires
exact match for a logN -bit field; the rule decoders in the
first column of PEs are in charge of this process, since the
results of the RID check need to be reported before any
update operation. The effect of this process is discussed in
Section 5.6.
After RID check is completed, to target the above three

subproblems, we present our main ideas as follows:

1. (Section 5.2) For rule modification, we update all the
corresponding bit vectors in the BV arrays (for prefix
match fields), or we update the range boundaries di-
rectly (for range match fields), or we update priority
encoders (for priority).

2. (Section 5.3) For rule deletion, we keep a “valid”bit for
each rule; we reset the bit to invalidate a rule.

5If ∃i ∈ {0, 1, ..., N − 1}, such that Ri = R, modify rule Ri.

3. (Section 5.4) For rule insertion, we check the valid bits
of all rules first; if a rule in the rule set is invalid, we
modify this invalid rule into the new rule, and validate
this new rule.

Section 5.5 covers the architectural design for the update
mechanism. The resulting overall architecture consists of
multiple self-reconfigurable PEs; each PE configures its mem-
ory contents in a distributed manner. Section 5.6 summa-
rizes the update schedule.

5.2 Modification
After the RID check, rule modification can be performed

as: Given a rule with RID R (∃i ∈ {0, 1, ..., N − 1} such
that Ri = R, i.e., RID R already exists in the rule set),
all of its field values and priority, (1) compute the up-to-
date bit vectors, and replace the outdated bit vectors in the
BV arrays with the up-to-date bit vectors; or (2) update
the range boundaries of rule Ri; or (3) update the priority
encoder.
Let us first consider a prefix match subfield. The first

step for rule modification is to construct the up-to-date bit
vectors for this subfield. Specifically, we use Algorithm 1 to
construct all 2s up-to-date bit vectors (of length n) for this
s-bit subfield. The correctness of Algorithm 1 can be easily
proved [12]. Notice Algorithm 1 is a distributed algorithm;
if the modification of rule Ri requires multiple BV arrays to
be updated, Algorithm 1 is performed in parallel by the PEs
in the same horizontal pipeline where Ri resides. In each
PE, the logic-based rule decoder performs Algorithm 1 to
update the memory content by itself.

Algorithm 1 Up-to-date bit vectors for subfield j

Input n ternary strings each of s bits: Ti,j , where Ti,j ∈
{0, 1, ∗}, i = 0, 1, ..., n− 1.
Output 2s bit vectors each of length n:

b
(kj)

j = B
(kj)

j,0 B
(kj)

j,1 ...B
(kj)

j,n−1, where B
(kj)

j,i ∈ {0, 1},
kj = 0, 1, ..., 2s − 1, and i = 0, 1, ..., n− 1.

1: for i = 0, 1, ..., n− 1 do
2: for kj = 0, 1, ..., 2s − 1 do
3: if kj matches the regular expression Ti,j then

4: B
(kj)

j,i ← 1
5: else
6: B

(kj)

j,i ← 0
7: end if
8: end for
9: end for

In our approach, we replace all the bit vectors in a BV
array with the up-to-date bit vectors. An alternative can be
to update bit vectors in a BV array selectively only if the
up-to-date and outdated bit vectors are different; however,
this technique requires extra comparison units, which com-
plicates our design of each PE and consumes more resources.
Notice kj is directly used as the input address to the data

memory storing a BV array, and the bit vectors are stored
row-by-row in the data memory. To modify a single rule, we
need 2s memory write accesses, each access modifying a sin-
gle bit vector. Multiple rules can be modified concurrently,
but in the worst case, only a single rule is modified during
one update of the BV array.

We show an example for rule modification in a particular

 00 01 10 11

 0 0 1 1

 0 0 1 0

 00 01 10 11

 0 0 0 1

 0 0 1 0

BV array BV array

modify

Figure 7: Modifying a rule R0 (n = 2, s = 2)

Valid bit

 0

 0

Valid bit

 0

 1

 00 01 10 11

 0 0 0 1

 0 0 1 0

 00 01 10 11

 0 0 0 1

 0 0 1 0

BV array BV array

update

Figure 8: Deleting an old rule R1 (n = 2, s = 2)

subfield j in Figure 7. In this example, R1 is to be updated;
the ternary string representation of R1 needs to be changed
from “11” to “1*”. We have an outdated BV array to be
updated due to this rule modification. We replace the entire
BV array, although there is only 1-bit difference (for kj =
10 and R0) between the outdated BV array and the up-to-
date BV array. We repeat this operation to other subfields
requiring prefix match in order to update all the outdated
BV arrays.

The update process for a range match field does not re-
quire any bit vectors to be constructed, therefore the range
rules can be updated by modifying the memory contents di-
rectly. If the update process requires to change the priority
of the old rule, i.e., the new rule and the old rule have differ-
ent priority orders, we update the priority encoders based on
a dynamic tree structure [20]; the time complexity to update
the dynamic tree is O(logN). In general, if a prioritized rule
set requires both prefix match and range match to be per-
formed, the parallel time complexity for modifying a rule is
O(max[2s, 2, logN]).

5.3 Deletion
After the RID check, rule deletion can be performed as:

Given a RID R (∃i ∈ {0, 1, ..., N − 1} such that Ri = R,
i.e., RID R already exists in the rule set), delete the rule
with RID Ri from the rule set. i.e., Ri should no longer be
used to produce any matching result.

To handle rule deletion, let us first consider all the n rules
handled by a particular horizontal pipeline consisting of

⌈
L
s

⌉

PEs. We propose to use n“valid”bits to keep track of all the
n rules. A valid bit is a binary digit indicating the validity
of a specific rule. A rule is valid only if its corresponding
valid bit is set to “1”.

For a rule to be deleted, we reset its corresponding valid
bit to “0”. An invalid rule is not available for producing any
match result. We show an example for rule deletion in Fig-
ure 8. In this example, initially R0 is invalid; R1 is valid
and to be deleted. During the update, the valid bit corre-
sponding to R1 is reset to “0”. The n valid bits are directly
ANDed with the bit vector of length n propagated through

Valid bit

 1

 0

Valid bit

 1

 1

 00 01 10 11

 0 0 0 1

 0 0 1 0

 00 01 10 11

 0 0 0 1

 1 1 0 0

BV array BV array

modify

update

Figure 9: Inserting a new rule R (n = 2, s = 2)

the horizontal pipeline. As a result, if a rule is invalid (i.e.
its valid bit is “0”), the corresponding position for this rule
in the final AND result can only be “0”, indicating the input
does no match this rule.

5.4 Insertion
After the RID check, rule insertion can be performed as:

Given a rule with RID R (Ri �= R, for ∀i ∈ {0, 1, ..., N−1},
i.e., RID R does not exist in the rule set), all of its field
values and priority, add the new rule with RID R into the
rule set. i.e., check the valid bits, modify one of the invalid
rules and validate this new rule with RID R.
To insert a rule, we first check whether there is any in-

valid rule in the rule set; we denote this process as validity
check. Then we reuse the location of any invalid rule to in-
sert the new rule: we modify one of the invalid rules into
the new rule by following the same algorithms presented in
Section 5.2. Finally, we validate this new rule by updating
its corresponding valid bit.
Figure 9 shows an example of rule insertion in a subfield

requiring prefix match. In this figure, rule R1 is invalid as
indicated by the valid bit; all of the bit vectors in the BV
array are to be replaced by the up-to-date bit vectors. We
validate this new rule R by setting the valid bit of R1 to “1”.

5.5 Architecture for Dynamic Updates

5.5.1 Storing valid bits
The data memory in the modular PE with striding and

clustering techniques in Figure 6 can also be used to store
the valid bits. We use an extra column of PEs, each stor-
ing n valid bits for each horizontal pipeline. We place this
column of PE as the first vertical pipeline on the left of the 2-
dimensional pipelined architecture. The reason of doing this
is: for each horizontal pipeline, a validity check is required
for rule deletion/insertion; if the validity check is performed
in the middle or at the end of the horizontal pipeline, all
the packet headers being processed in the pipeline after the
validity check may still use obsolete data values and produce
incorrect computation results (data hazard). In that case,
either stalling or flushing the pipeline is necessary, which af-
fects the sustained throughput of the pipeline. Storing valid
bits in the first PE of each horizontal pipeline reduces the
number of bubbles injected into the pipeline and minimizes
the negative effect of validity check on the throughput per-
formance.
Valid bits are extracted during run-time and output to the

next PE in the horizontal pipeline. The resulting overall ar-
chitecture has

⌈
N
s

⌉
rows and

(⌈
L
s

⌉
+ 1

)
columns, where valid

Table 3: Update overhead (clock cycles) in a PE[l, 0], l =
0, 1, ...,

⌈
N
n

⌉− 1

Update types Modify Delete Insert

RID check 1 1 1
Rule translation 1 1 1
Validity check - 0 0

Updating BV array/ 2s/
-

2s/
range boundaries 2 2
Updating priority logN logN logN
Updating valid bits - 1 1

Worst-case 2+ 3+ 3+
total overhead max[2s, 2, logN] logN max[2s, 2, logN]

bits are stored and extracted in PE[l, 0], l = 0, 1, ...,
⌈
N
n

⌉−1
(the first column).

5.5.2 Logic-based rule decoder
To save I/O pins on FPGA, we use the pins for packet

header (in total L pins) to input a new rule. In each PE[l, 0],
l = 0, 1, ...,

⌈
N
n

⌉ − 1, the RID of the rule that needs an
update is provided to the rule decoder. During an update,
the control signals are generated by the rule decoder. For
PE[l, 0], l = 0, 1, ...,

⌈
N
n

⌉ − 1, the up-to-date valid bits are
also generated by the rule decoders. Specifically, the rule
decoder is in charge of:

1. RID check (for all update operations, only in PEs of
the first column): The rule decoders check whether the
RID of the new rule already exists in the rule set.

2. Rule translation (for modification/insertion, in all PEs):
Based on the new rule, all the data to be written to
the data memory are generated by the rule decoder;
the data to be written can be 2s n-bit vectors in a BV
array for a prefix rule, or 2 s-bit range boundaries for
a range rule.

3. Validity check (for deletion/insertion, only in PEs of
the first column): The validity check is also performed
by the rule decoder. In our implementation, the rule
decoder reports the position of the first invalid bit in
the data memory.

4. Construction of up-to-date valid bits (for insertion, only
in PEs of the first column): The rule decoder also pro-
vides the control signals and the data to be written
back (up-to-date valid vector) to the data memory.

The rule decoder is a distributed controller for each PE; it
gives each PE the ability to reconfigure its memory contents
by itself during an update (self-reconfiguration). As a re-
sult, the dynamic updates are performed in a fine-grained
distributed manner in parallel.

5.6 Update Schedule and Overhead
To further improve the performance of our architecture,

we overlap the validity check process with on-going packet
header match process; the validity check results are reported
every clock cycle to the rule decoder for all PE[l, 0], l =
0, 1, ...,

⌈
N
n

⌉− 1. Table 3 summarizes the overheads for up-
date operations in such a PE:

• For all update operations, the RID of the new rule has
to be checked against all rules, which results in 1-cycle
overhead (pipeline bubble).

PE PE PE

PE PE PE

PE PE PE

PE PE PE

1st cycle 2nd cycle

PE PE

PE PE

PE PE PE

PE PE PE

PE

PE

-th cycle

PE PE

PE PE

PE PE PE

PE PE PE

PE

PE

-th cycle

PE PE

PE PE

PE PE PE

PE PE PE

PE

PE

PE : rule translation

: updating

PE

PE

: updating

PE : match process

PE : RID check

PE : bubble

Figure 10: Example: modifying a rule (L
s
+ 1 = 3, N

n
= 4,

s = n = 1)

• The rule decoder generates control signals based on the
input rule provided on the s packet header input wires;
hence the rule translation cannot be overlapped with
the packet header match process. In our implementa-
tion, this leads to a 1-cycle overhead.

• To update (1) the BV array or (2) the range bound-
aries, the rule decoder either (1) initiates 2s memory
write accesses or (2) initiates 2 memory write access.
During the update, the memory cannot be read by the
packet header match process. In addition, the priority
encoders require logN cycles to modify the priority of
a rule. However, the process of updating the priority
can be overlapped with the process of updating the
data memory.

• The update process for the valid bits (n memory write
access) cannot be overlapped with the on-going packet
header match process; this results in another 1-cycle
overhead.

In the worst case, a single rule modification requires all
the BV arrays stored in a horizontal pipeline to be updated.
We show an example of the update schedule (4 × 3 PEs,
excluding priority encoders) in Figure 10. In this example,
the RID check results indicate the RID of the new rule exists
in the last horizontal pipeline, therefore only the PEs in the
last row require the contents in the data memories to be
updated. As can be seen, although (L

s
+ N

n
) clock cycles are

required for the new rule to propagate across the entire 2-
dimensional pipelined architecture, this amount of time does
not contribute to the total update overhead of the entire
architecture; this is because the update is performed in a
distributed manner. Assuming 2s ≥ logN ≥ 2, the total
number of bubbles injected into a particular PE is at most
2s for a rule modification. For example, in Figure 10, 2s =
2 bubbles are injected into each of the horizontal pipelines
except the last one, while the packet header match process
is stalled for a total number of 2s + 2 = 4 clock cycles for
each PE.

Since all other PEs except PE[l, 0], l = 0, 1, ...,
⌈
N
n

⌉ − 1
neither perform validity check nor update valid vectors, the

PEs in the first column of the architecture introduce the
most update overhead. Hence Table 3 also lists the worst-
case update overhead for all PEs. As can be seen, the insert
operation introduces the most overhead among all types of
update operations.

6. PERFORMANCE EVALUATION

6.1 Experimental Setup
We conducted experiments using Xilinx ISE Design Suite

14.5, targeting the Virtex 6 XC6VLX760 FFG1760-2 FPGA
[19]. This device has 118, 560 logic slices, 1200 I/O pins,
26Mb BRAM (720 RAMB36 blocks), and can be config-
ured to realize large amount of distRAM (up to 8Mb). All
the memory modules are configured as dual-ported for read
access to enhance the throughput. It has 2 slices in a Con-
figurable Logic Block (CLB), each slice having 4 LUTs and 8
flip-flops. Clock rate and resource consumption are reported
using post-place-and-route results.

Since the construction of bit vectors or range boundaries
does not explore any rule set features6, the performance of
the architecture does not depend on rule set features other
than the rule set size. We use randomly generated bit vec-
tors; we also generate random packet headers for both classic
(d = 5, L = 104) and OpenFlow (d = 15, L = 356) packet
classification in order to prototype our design, although our
architecture neither restricts the number of packet header
fields (d) nor requires a specific length of the input bits (L).
The number of rules in a rule set is chosen to range from 128
to 1K, since most of the real-life rule sets are fairly small [9].

6.2 Design Parameters/Performance Metrics
We vary several design parameters to optimize our archi-

tecture, including:

Size of the rule set (N) The total number of rules in a
rule set

Length of the bit vector (n) The number of bits in a bit
vector

Length of the input (L) The total number of input
packet header bits

Stride (s) The number of bits for a subfield in the packet
header

Update rate (U) The total number of all update opera-
tions (modify, delete or insert) for the rule set per unit
time

We study the performance trade-offs with respect to the fol-
lowing metrics:

Peak throughput (Tpeak) The maximum number of input
packet bits (assuming the minimum packet size to be
max{L, 40 bytes}) processed per second without any
update operation

Sustained throughput (Tsustained) The actual number of
packet bits (including both header and payload) pro-
cessed per second considering all update operations

6e.g. the number of unique values in each field, the average
length of prefixes, etc.

Table 4: Clock rate (MHz) of various designs

Stride (s)
1 2 3 4 5 6 7

n

4 225.48 204.42 339.79 346.14 364.56 379.65 339.79
8 210.08 254.97 352.86 389.86 364.30 380.47 257.47
16 257.40 279.96 373.00 370.10 373.00 363.77 289.10
32 259.40 239.69 342.35 344.83 355.11 315.26 262.67
64 201.01 244.26 315.76 317.56 336.36 299.67 260.28

Resource consumption The total amount of hardware re-
sources (logic slices, I/O, etc.) consumed by the archi-
tecture on FPGA

Energy efficiency (η) The total energy spent for classify-
ing an incoming packet [21]

6.3 Empirical Optimization of Parameters
We first optimize our design for given N and L, and vary-

ing n and s. We choose a small value of N = 128 at first,
and L = 356 for OpenFlow packet classification. The values
of n and s which give the best performance are then used in
later designs with other values of N and L; we scale our ar-
chitecture with respect to N , and also show the performance
for classic packet classification.
We show the maximum clock rate achieved by various de-

signs in Table 4. We choose s from 1 to 7 and n from 4 to
64, since for s > 7 or n > 64, the clock rate drops to below
200MHz. As can be seen:

• We achieve very high clock rate (200 ∼ 400MHz) with
small variations in various designs. They correspond
to high throughput for OpenFlow packet classification
(128 ∼ 256Gbps).

• For s = 1, 2, BV arrays are stored in 2s-input “shal-
low” memories. This memory organization underuti-
lizes the distRAM modules on FPGA (6-input LUT
based). In addition, since we have a large number of
pipeline stages for s = 1, 2, the entire architecture con-
sumes a large amount of registers; the complex rout-
ing between these registers also limits the maximum
achievable clock rate (200 ∼ 300MHz).

• For s = 3, 4, 5, 6, the best performance is achieved
for either n = 8 or n = 16. Notice there is fast in-
terconnect in a slice, then slightly slower interconnect
between slices in a CLB, followed by the interconnect
between CLBs. A PE with n = 8 uses exactly 8 flip-
flops of a slice to register a bit vector, while a PE with
n = 16 uses exactly all 16 flip-flops in a CLB to regis-
ter a bit vector; these two configurations introduce the
least routing overhead.

• For s > 6, BV arrays are stored in 2s-input deep mem-
ories. This organization requires multiple LUTs of dif-
ferent CLBs to be used for a single PE; the long wiring
delay between CLBs results in the deterioration of the
clock rate.

• We achieve the best performance for our architecture
when s = 4 and n = 8. This is because all the LUTs
within a single slice can be configured as 128-bit dual-
port distRAM; the configuration of n = 8 and s = 4
not only uses up all the 8 flip-flops in a slice, but also

0

100

200

300

128 256 512 1024

T
hr

ou
gh

pu
t (

G
bp

s)

Number of rules (N)

n=N clustering (n=8)

Figure 11: Scalability with respect to N

0

100

200

300

128 256 512 1024

T
hr

ou
gh

pu
t (

G
bp

s)

Number of rules (N)

L=104 L=356

Figure 12: Scalability with respect to L

provides a memory organization to store bit vectors of
total size 2s × n = 128 bits.

In summary, for N = 128 and L = 356, the best performance
is achieved when s = 4 and n = 8. Hence we use s = 4 and
n = 8 to implement the architecture for other values of N
and L.

6.4 Scalability of Throughput
Using s = 4 and n = 8, we vary N and L, respectively, to

show the scalability of our architecture.
Figure 11 shows the throughput of our architecture with

respect to various values of N . As can be seen, our architec-
ture maintains very high clock rate (324MHz) and through-
put (208Gbps) even for N = 1024. We also show in the
same figure the necessity of using the clustering technique
discussed in Section 4.4. Compared to the case with no
clustering technique (the basic pipelined architecture with
n = N), our architecture achieves much better throughput
performance (up to 2×) when the rule set is large; in our ar-
chitecture, the clock rate drops much slower as N increases.

Figure 12 shows the achieved throughput for both the clas-
sic packet classification (L = 104) and OpenFlow packet
classification (L = 356). We integrated range match to the
port number fields for the classic packet classification. Our
architecture achieves high throughput for the classic packet

0

100

200

300

1K 10K 100K 1M

T
hr

ou
gh

pu
t (

G
bp

s)

Update rate (updates/s)

peak sustained

Figure 13: Sustained throughput

Table 5: Resource consumption (s = 4, n = 8 and L = 356)

No. of rules N 128 256 512 1024

No. of logic slices 14773 29056 57209 112812
(% of total) (12%) (25%) (48%) (95%)

No. of I/O pins 722 723 724 725
(% of total) (60%) (60%) (60%) (60%)

classification; the performance is also achieved with little
degradation for OpenFlow packet classification.

6.5 Updates and Sustained Throughput
As discussed in Section 5.6, the rule insertion stalls the

packet header match process for the most number of clock
cycles; for the worst-case analysis, we assume pessimistically
that all the update operations are rule insertions. Based on
Table 3, the sustained throughput can be calculated using
the following equation:

Tsustain = Tpeak · f − 2 · (max[2s, 2, logN] + 3) · U
f

(1)

where f denotes the maximum clock rate achieved for a spe-
cific design. The factor of 2 comes from the fact that mem-
ory write access on FPGA can only be configured as single-
ported instead of dual-ported.
Figure 13 shows the sustained throughput for our architec-

ture, considering the worst-case scenario for all update oper-
ations. In the implementation, s = 4 and n = 8 are used to
achieve the best clock rate for N = 1024. As can be seen, our
architecture sustains a high throughput of 190Gbps with 1M
updates/s, although 1M updates/s is pessimistic considering
real-world traffic.

6.6 Energy Efficiency
We report the resource consumption for OpenFlow packet

classification in Table 5. The resources consumed by the
architecture increases sublinearly with respect to the number
of rule N .
We measure the energy efficiency with respect to the en-

ergy consumed for the classification of each packet (J/packet);
a small value of this metric is desirable. Figure 14 shows
a comparison of our approach with existing solutions on
FPGA. We consider a 15-field OpenFlow classification rule

0

100

200

300

0

100

200

300 T
hroughput (G

bps) E
ne

rg
y/

pa
ck

et
 (n

J)
 Energy

Throughput

Figure 14: Energy efficiency

set with 1K rules for all the schemes. Since the known imple-
mentations of TCAM, FSBV and StrideBV approaches do
not support range match, we assume all the 1K rules only
require prefix match to be performed. We scale the TCAM
performance to the state-of-the-art technology based on a
18Mbit TCAM running at 360MHz and consuming 15W
[22]; we ignore the power consumed by the extra logic for
managing the TCAM access. We scale up the memory con-
sumption of FSBV and StrideBV to estimate the total power
consumed for OpenFlow packet classification; the power con-
sumption for FSBV and StrideBV, as well as our approach, is
evaluated using XPower Analyzer tool available in the Xil-
inx ISE Design Suite 14.5 on the state-of-the-art Virtex 6
XC6VLX760 FFG1760-2 FPGA. The decision-tree based
approach on FPGA [23] is also scaled to the same Virtex 6
device. For StrideBV, the most energy-efficient design with
s = 4 [9] is considered, while the energy consumption of our
approach is based on the design with s = 4 and n = 8.

We notice that our design runs at a higher clock rate than
other FPGA-based designs including the FSBV, StrideBV
and decision-tree based approaches; to make a fair compar-
ison, we also show the throughput for all the approaches in
Figure 14. The throughput performance of TCAM is esti-
mated based on the assumption that packets can be classified
within a single clock cycle. For the FSBV and StrideBV ap-
proaches, we measure the throughput for the single-pipeline
implementation due to limited memory resources on FPGA.

We have the following observations:

• All the FPGA-based approaches for OpenFlow packet
classification achieve at least 4× energy efficiency than
the TCAM solution.

• Compared with FSBV (33.8 nJ/packet), our approach
(15.9 nJ/packet) consumes less energy to classify an
OpenFlow packet. The longest wire length is reduced
in our architecture, leading to a more energy-efficient
design [24] on FPGA.

• Compared with the decision-tree based approach on
FPGA (75.1 nJ/packet), our approach achieves 5× en-
ergy efficiency; our approach only uses LUT-based dis-
tRAM, while the decision-tree based approach employs
a large amount of BRAM and distRAM at the same

time. Note that the throughput performance of decision-
tree based approach depends on the rule set.

• Compared with StrideBV (12.7 nJ/packet), our ap-
proach consumes more energy (1.25×). This is be-
cause the PE in our architecture is self-reconfigurable
and supports dynamic updates, which requires more
resources and consumes more energy. Moreover, our
architecture allows us to classify packets at a very high
clock rate, which also results in more power consump-
tion than other approaches. However, with slightly
more energy, our approach achieves scalability, sustains
high throughput (2× compared with other approaches)
and supports fast incremental update.

6.7 Summary
We summarize the advantages of the proposed architecture

as follows:

1. Parameterized: The architecture is highly parame-
terized; it can be optimized with respect to various
performance metrics.

2. Efficient support for range match: The architec-
ture supports efficient range match without any range-
to-prefix conversion.

3. Rule-set-independent: The performance does not
depend on any rule set features other than the rule set
size.

4. High-throughput: All the PEs access their desig-
nated distRAM modules independently. The memory
access is localized, resulting in shorter wires connecting
the AND gate and the memory modules in each PE.
This leads to high clock rate and high throughput on
FPGA.

5. Scalable with respect to rule set size: The longest
wire length is not significantly affected by the increas-
ing total number of rules; the architecture sustains high
throughput for a large number of rules, assuming we
have sufficient hardware resources.

6. Scalable with respect to input length: The through-
put performance is not adversely affected by the in-
creasing number of the input packet header bits. Our
architecture achieves good performance for both classic
and OpenFlow packet classification.

7. Dynamically updatable: The dynamic update is
performed in a distributed manner on self-reconfigurable
PEs; the update scheme has little impact on the sus-
tained performance.

8. Energy-efficient: The proposed architecture demon-
strates better energy efficiency. Compared to StrideBV,
our approach sustains 2× throughput and supports fast
dynamic updates with slightly more energy consump-
tion per packet.

7. CONCLUSION AND FUTURE WORK
In this paper we presented a 2-dimensional pipelined ar-

chitecture for both the classic and OpenFlow packet classi-
fication. The resulting architecture employs localized mem-
ory access on FPGA and achieves scalability with respect to

both the rule set size and the input length. This architec-
ture also supports efficient range search and does not require
any knowledge of the rule set features; it supports very high
throughput with little dynamic update overhead. We also
compared the energy efficiency of this architecture with ex-
isting solutions and demonstrated high energy efficiency.

In the future, we plan to use this architecture vigorously
for other network applications including traffic classification
and heavy hitter detection for data center networks. We will
also explore more techniques to improve the energy efficiency
of this architecture.

8. REFERENCES
[1] N. McKeown, T. Anderson, H. Balakrishnan,

G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner, “OpenFlow: Enabling Innovation in
Campus Networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, 2008.

[2] “OpenFlow Switch Specification V1.1.0,”
https://www.opennetworking.org/images/stories/
downloads/sdn-resources/onf-specifications/openflow/
openflow-spec-v1.1.0.pdf.

[3] “OpenFlow Switch Specification V1.3.1,”
https://www.opennetworking.org/images/stories/
downloads/sdn-resources/onf-specifications/openflow/
openflow-spec-v1.3.1.pdf.

[4] P. Gupta and N. McKeown, “Algorithms for packet
classification,” IEEE Network, vol. 15, no. 2, pp.
24–32, 2001.

[5] F. Yu, R. H. Katz, and T. V. Lakshman, “Efficient
Multimatch Packet Classification and Lookup with
TCAM,” IEEE Micro, vol. 25, no. 1, pp. 50–59, 2005.

[6] K. Lakshminarayanan, A. Rangarajan, and
S. Venkatachary, “Algorithms for Advanced Packet
Classification with Ternary CAMs,” in Proc. ACM
SIGCOMM, 2005, pp. 193–204.

[7] S. Yi, B.-k. Kim, J. Oh, J. Jang, G. Kesidis, and C. R.
Das, “Memory-efficient Content Filtering Hardware for
High-speed Intrusion Detection Systems,” in Proc. of
the 2007 ACM Symposium on Applied Computing
(SAC), 2007, pp. 264–269.

[8] A. Majumdar, S. Cadambi, M. Becchi, S. T.
Chakradhar, and H. P. Graf, “A Massively Parallel,
Energy Efficient Programmable Accelerator for
Learning and Classification,”ACM Trans. Archit.
Code Optim., vol. 9, no. 1, pp. 6:1–6:30, 2012.

[9] T. Ganegedara and V. K. Prasanna, “StrideBV: Single
Chip 400G+ Packet Classification,” in 13th IEEE
International Conference on High Performance
Switching and Routing (HPSR), 2012, pp. 1–6.

[10] P. Gupta and N. McKeown, “Dynamic Algorithms
with Worst-Case Performance for Packet
Classification,” in Proc. of the IFIP-TC6, 2000, pp.
528–539.

[11] B. Vamanan and T. N. Vijaykumar, “TreeCAM:
Decoupling Updates and Lookups in Packet
Classification,” in Proc. of the 7th COnference on
emerging Networking EXperiments and
Technologies(CoNEXT), 2011, pp. 27:1–27:12.

[12] W. Jiang and V. K. Prasanna, “Field-split Parallel
Architecture for High Performance Multi-match
Packet Classification using FPGAs,” in Proc. of the

21st Annual Symp. on Parallelism in Algorithms and
Arch. (SPAA), 2009, pp. 188–196.

[13] D. E. Taylor, “Survey and Taxonomy of Packet
Classification Techniques,”ACM Computing Surveys,
vol. 37, no. 3, pp. 238–275, 2005.

[14] W. Jiang and V. K. Prasanna, “Large-scale Wire-speed
Packet Classification on FPGAs,” in Proc. of the
ACM/SIGDA intl. symposium on Field Programmable
Gate Arrays (FPGA), 2009, pp. 219–228.

[15] D. E. Taylor and J. S. Turner, “Scalable Packet
Classification using Distributed Crossproducting of
Field Labels,” in Proc. IEEE INFOCOM, 2005, pp.
269–280.

[16] V. Pus, J. Korenek, and J. Korenek, “Fast and
Scalable Packet Classification using Perfect Hash
Functions,” in Proc. of the ACM/SIGDA international
symposium on Field Programmable Gate Arrays
(FPGA), 2009, pp. 229–236.

[17] T. V. Lakshman and D. Stiliadis, “High-Speed
Policy-Based Packet Forwarding Using Efficient
Multi-Dimensional Range Matching,” in Proc. ACM
SIGCOMM, 1998, pp. 203–214.

[18] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel,
“Fast and Scalable Layer Four Switching,” in Proc.
ACM SIGCOMM, 1998, pp. 191–202.

[19] “Virtex-6 FPGA Family,”
http://www.xilinx.com/products/virtex6/index.htm.

[20] Y.-H. E. Yang and V. K. Prasanna, “High Throughput
and Large Capacity Pipelined Dynamic Search Tree on
FPGA,” in Proceedings of the 18th annual
ACM/SIGDA international symposium on Field
Programmable Gate Arrays (FPGA), 2010, pp. 83–92.

[21] A. Kennedy, X. Wang, and B. Liu, “Energy Efficient
Packet Classification Hardware Accelerator,” in Proc.
of IEEE International Symposium on Parallel and
Distributed Processing (IPDPS), 2008, pp. 1–8.

[22] F. Zane, G. Narlikar, and A. Basu, “CoolCAMs:
Power-efficient TCAMs for Forwarding Engines,” in
Proc. IEEE INFOCOM, vol. 1, 2003, pp. 42 – 52.

[23] W. Jiang and V. K. Prasanna, “Scalable Packet
Classification on FPGA,” IEEE Trans. VLSI Syst.,
vol. 20, no. 9, pp. 1668–1680, 2012.

[24] R. Balasubramonian, N. Muralimanohar, K. Ramani,
L. Cheng, and J. Carter, “Leveraging Wire Properties
at the Microarchitecture Level,”Micro, IEEE, vol. 26,
no. 6, pp. 40–52, 2006.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20130930100723
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 3
 AllDoc
 3

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 11
 12
 11
 12

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20130930100723
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Up
 7.2000
 0.0000

 Both
 3
 AllDoc
 3

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 11
 12
 11
 12

 1

 HistoryList_V1
 qi2base

